7 resultados para Warren abstract machine
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Slot and van Emde Boas Invariance Thesis states that a time (respectively, space) cost model is reasonable for a computational model C if there are mutual simulations between Turing machines and C such that the overhead is polynomial in time (respectively, linear in space). The rationale is that under the Invariance Thesis, complexity classes such as LOGSPACE, P, PSPACE, become robust, i.e. machine independent. In this dissertation, we want to find out if it possible to define a reasonable space cost model for the lambda-calculus, the paradigmatic model for functional programming languages. We start by considering an unusual evaluation mechanism for the lambda-calculus, based on Girard's Geometry of Interaction, that was conjectured to be the key ingredient to obtain a space reasonable cost model. By a fine complexity analysis of this schema, based on new variants of non-idempotent intersection types, we disprove this conjecture. Then, we change the target of our analysis. We consider a variant over Krivine's abstract machine, a standard evaluation mechanism for the call-by-name lambda-calculus, optimized for space complexity, and implemented without any pointer. A fine analysis of the execution of (a refined version of) the encoding of Turing machines into the lambda-calculus allows us to conclude that the space consumed by this machine is indeed a reasonable space cost model. In particular, for the first time we are able to measure also sub-linear space complexities. Moreover, we transfer this result to the call-by-value case. Finally, we provide also an intersection type system that characterizes compositionally this new reasonable space measure. This is done through a minimal, yet non trivial, modification of the original de Carvalho type system.
Resumo:
Interactive theorem provers (ITP for short) are tools whose final aim is to certify proofs written by human beings. To reach that objective they have to fill the gap between the high level language used by humans for communicating and reasoning about mathematics and the lower level language that a machine is able to “understand” and process. The user perceives this gap in terms of missing features or inefficiencies. The developer tries to accommodate the user requests without increasing the already high complexity of these applications. We believe that satisfactory solutions can only come from a strong synergy between users and developers. We devoted most part of our PHD designing and developing the Matita interactive theorem prover. The software was born in the computer science department of the University of Bologna as the result of composing together all the technologies developed by the HELM team (to which we belong) for the MoWGLI project. The MoWGLI project aimed at giving accessibility through the web to the libraries of formalised mathematics of various interactive theorem provers, taking Coq as the main test case. The motivations for giving life to a new ITP are: • study the architecture of these tools, with the aim of understanding the source of their complexity • exploit such a knowledge to experiment new solutions that, for backward compatibility reasons, would be hard (if not impossible) to test on a widely used system like Coq. Matita is based on the Curry-Howard isomorphism, adopting the Calculus of Inductive Constructions (CIC) as its logical foundation. Proof objects are thus, at some extent, compatible with the ones produced with the Coq ITP, that is itself able to import and process the ones generated using Matita. Although the systems have a lot in common, they share no code at all, and even most of the algorithmic solutions are different. The thesis is composed of two parts where we respectively describe our experience as a user and a developer of interactive provers. In particular, the first part is based on two different formalisation experiences: • our internship in the Mathematical Components team (INRIA), that is formalising the finite group theory required to attack the Feit Thompson Theorem. To tackle this result, giving an effective classification of finite groups of odd order, the team adopts the SSReflect Coq extension, developed by Georges Gonthier for the proof of the four colours theorem. • our collaboration at the D.A.M.A. Project, whose goal is the formalisation of abstract measure theory in Matita leading to a constructive proof of Lebesgue’s Dominated Convergence Theorem. The most notable issues we faced, analysed in this part of the thesis, are the following: the difficulties arising when using “black box” automation in large formalisations; the impossibility for a user (especially a newcomer) to master the context of a library of already formalised results; the uncomfortable big step execution of proof commands historically adopted in ITPs; the difficult encoding of mathematical structures with a notion of inheritance in a type theory without subtyping like CIC. In the second part of the manuscript many of these issues will be analysed with the looking glasses of an ITP developer, describing the solutions we adopted in the implementation of Matita to solve these problems: integrated searching facilities to assist the user in handling large libraries of formalised results; a small step execution semantic for proof commands; a flexible implementation of coercive subtyping allowing multiple inheritance with shared substructures; automatic tactics, integrated with the searching facilities, that generates proof commands (and not only proof objects, usually kept hidden to the user) one of which specifically designed to be user driven.
Resumo:
Statistical modelling and statistical learning theory are two powerful analytical frameworks for analyzing signals and developing efficient processing and classification algorithms. In this thesis, these frameworks are applied for modelling and processing biomedical signals in two different contexts: ultrasound medical imaging systems and primate neural activity analysis and modelling. In the context of ultrasound medical imaging, two main applications are explored: deconvolution of signals measured from a ultrasonic transducer and automatic image segmentation and classification of prostate ultrasound scans. In the former application a stochastic model of the radio frequency signal measured from a ultrasonic transducer is derived. This model is then employed for developing in a statistical framework a regularized deconvolution procedure, for enhancing signal resolution. In the latter application, different statistical models are used to characterize images of prostate tissues, extracting different features. These features are then uses to segment the images in region of interests by means of an automatic procedure based on a statistical model of the extracted features. Finally, machine learning techniques are used for automatic classification of the different region of interests. In the context of neural activity signals, an example of bio-inspired dynamical network was developed to help in studies of motor-related processes in the brain of primate monkeys. The presented model aims to mimic the abstract functionality of a cell population in 7a parietal region of primate monkeys, during the execution of learned behavioural tasks.
Resumo:
The goal of this thesis work is to develop a computational method based on machine learning techniques for predicting disulfide-bonding states of cysteine residues in proteins, which is a sub-problem of a bigger and yet unsolved problem of protein structure prediction. Improvement in the prediction of disulfide bonding states of cysteine residues will help in putting a constraint in the three dimensional (3D) space of the respective protein structure, and thus will eventually help in the prediction of 3D structure of proteins. Results of this work will have direct implications in site-directed mutational studies of proteins, proteins engineering and the problem of protein folding. We have used a combination of Artificial Neural Network (ANN) and Hidden Markov Model (HMM), the so-called Hidden Neural Network (HNN) as a machine learning technique to develop our prediction method. By using different global and local features of proteins (specifically profiles, parity of cysteine residues, average cysteine conservation, correlated mutation, sub-cellular localization, and signal peptide) as inputs and considering Eukaryotes and Prokaryotes separately we have reached to a remarkable accuracy of 94% on cysteine basis for both Eukaryotic and Prokaryotic datasets, and an accuracy of 90% and 93% on protein basis for Eukaryotic dataset and Prokaryotic dataset respectively. These accuracies are best so far ever reached by any existing prediction methods, and thus our prediction method has outperformed all the previously developed approaches and therefore is more reliable. Most interesting part of this thesis work is the differences in the prediction performances of Eukaryotes and Prokaryotes at the basic level of input coding when ‘profile’ information was given as input to our prediction method. And one of the reasons for this we discover is the difference in the amino acid composition of the local environment of bonded and free cysteine residues in Eukaryotes and Prokaryotes. Eukaryotic bonded cysteine examples have a ‘symmetric-cysteine-rich’ environment, where as Prokaryotic bonded examples lack it.
Resumo:
Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.
Resumo:
The Curry-Howard isomorphism is the idea that proofs in natural deduction can be put in correspondence with lambda terms in such a way that this correspondence is preserved by normalization. The concept can be extended from Intuitionistic Logic to other systems, such as Linear Logic. One of the nice conseguences of this isomorphism is that we can reason about functional programs with formal tools which are typical of proof systems: such analysis can also include quantitative qualities of programs, such as the number of steps it takes to terminate. Another is the possiblity to describe the execution of these programs in terms of abstract machines. In 1990 Griffin proved that the correspondence can be extended to Classical Logic and control operators. That is, Classical Logic adds the possiblity to manipulate continuations. In this thesis we see how the things we described above work in this larger context.
Resumo:
The research activity focused on the study, design and evaluation of innovative human-machine interfaces based on virtual three-dimensional environments. It is based on the brain electrical activities recorded in real time through the electrical impulses emitted by the brain waves of the user. The achieved target is to identify and sort in real time the different brain states and adapt the interface and/or stimuli to the corresponding emotional state of the user. The setup of an experimental facility based on an innovative experimental methodology for “man in the loop" simulation was established. It allowed involving during pilot training in virtually simulated flights, both pilot and flight examiner, in order to compare the subjective evaluations of this latter to the objective measurements of the brain activity of the pilot. This was done recording all the relevant information versus a time-line. Different combinations of emotional intensities obtained, led to an evaluation of the current situational awareness of the user. These results have a great implication in the current training methodology of the pilots, and its use could be extended as a tool that can improve the evaluation of a pilot/crew performance in interacting with the aircraft when performing tasks and procedures, especially in critical situations. This research also resulted in the design of an interface that adapts the control of the machine to the situation awareness of the user. The new concept worked on, aimed at improving the efficiency between a user and the interface, and gaining capacity by reducing the user’s workload and hence improving the system overall safety. This innovative research combining emotions measured through electroencephalography resulted in a human-machine interface that would have three aeronautical related applications: • An evaluation tool during the pilot training; • An input for cockpit environment; • An adaptation tool of the cockpit automation.