4 resultados para Warner-Bratzler shear force

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geometric nonlinearities of flexure hinges introduced by large deflections often complicate the analysis of compliant mechanisms containing such members, and therefore, Pseudo-Rigid-Body Models (PRBMs) have been well proposed and developed by Howell [1994] to analyze the characteristics of slender beams under large deflection. These models, however, fail to approximate the characteristics for the deep beams (short beams) or the other flexure hinges. Lobontiu's work [2001] contributed to the diverse flexure hinge analysis building on the assumptions of small deflection, which also limits the application range of these flexure hinges and cannot analyze the stiffness and stress characteristics of these flexure hinges for large deflection. Therefore, the objective of this thesis is to analyze flexure hinges considering both the effects of large-deflection and shear force, which guides the design of flexure-based compliant mechanisms. The main work conducted in the thesis is outlined as follows. 1. Three popular types of flexure hinges: (circular flexure hinges, elliptical flexure hinges and corner-filleted flexure hinges) are chosen for analysis at first. 2. Commercial software (Comsol) based Finite Element Analysis (FEA) method is then used for correcting the errors produced by the equations proposed by Lobontiu when the chosen flexure hinges suffer from large deformation. 3. Three sets of generic design equations for the three types of flexure hinges are further proposed on the basis of stiffness and stress characteristics from the FEA results. 4. A flexure-based four-bar compliant mechanism is finally studied and modeled using the proposed generic design equations. The load-displacement relationships are verified by a numerical example. The results show that a maximum error about the relationship between moment and rotation deformation is less than 3.4% for a flexure hinge, and it is lower than 5% for the four-bar compliant mechanism compared with the FEA results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fracture mechanics plays an important role in the material science, structure design and industrial production due to the failure of materials and structures are paid high attention in human activities. This dissertation, concentrates on some of the fractural aspects of shaft and composite which have being increasingly used in modern structures, consists four chapters within two parts. Chapters 1 to 4 are included in part 1. In the first chapter, the basic knowledge about the stress and displacement fields in the vicinity of a crack tip is introduced. A review involves the general methods of calculating stress intensity factors are presented. In Chapter 2, two simple engineering methods for a fast and close approximation of stress intensity factors of cracked or notched beams under tension, bending moment, shear force, as well as torque are presented. New formulae for calculating the stress intensity factors are proposed. One of the methods named Section Method is improved and applied to the three dimensional analysis of cracked circular section for calculating stress intensity factors. The comparisons between the present results and the solutions calculated by ABAQUS for single mode and mixed mode are studied. In chapter 3, fracture criteria for a crack subjected to mixed mode loading of two-dimension and three-dimension are reviewed. The crack extension angle for single mode and mixed mode, and the critical loading domain obtained by SEDF and MTS are compared. The effects of the crack depth and the applied force ratio on the crack propagation angle and the critical loading are investigated. Three different methods calculating the crack initiation angle for three-dimension analysis of various crack depth and crack position are compared. It should be noted that the stress intensity factors used in the criteria are calculated in section 2.1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the PhD research was the identification of new strategies of farming and processing, with the aim to improve the nutritional and technological characteristics of poultry meat. Part of the PhD research was focused on evaluation of alternative farming systems, with the aim to increase animal welfare and to improve the meat quality and sensorial characteristics in broiler chickens. It was also assessed the use of innovative ingredients for marination of poultry meat (sodium bicarbonate and natural antioxidants) The research was developed by studying the following aspects: - Meat quality characteristics, oxidative stability and sensorial traits of chicken meat obtained from two different farming systems: free range vs conventional; - Meat quality traits of frozen chicken breast pre-salted using increasing concentrations of sodium chloride; - Use of sodium bicarbonate in comparison with sodium trypolyphosphate for marination of broiler breast meat and phase; - Marination with thyme and orange essential oils mixture to improve chicken meat quality traits, susceptibility to lipid oxidation and sensory traits. The following meat quality traits analyseswere performed: Colour, pH, water holding capacity by conventional (gravimetric methods, pressure application, centrifugation and cooking) and innovative methods (low-field NMR and DSC analysis) ability to absorb marinade soloutions, texture (shear force using different probes and texture profile analysis), proximate analysis (moisture, proteins, lipids, ash content, collagen, fatty acid), susceptibility to lipid oxidation (determinations of reactive substances with thiobarbituric acid and peroxide value), sensorial analysis (triangle test and consumer test).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a context of technological innovation, the aim of this thesis is to develop a technology that has gained interest in both scientific and industrial realms. This technology serves as a viable alternative to outdated and energy-consuming industrial systems. Electro-adhesive devices (EADs) leverage electrostatic forces for grasping objects or adhering to surfaces. The advantage of employing electrostatics lies in its adaptability to various materials without compromising the structure or chemistry of the object or surface. These benefits have led the industry to explore this technology as a replacement for costly vacuum systems and suction cups currently used for handling most products. Furthermore, the broad applicability of this technology extends to extreme environments, such as space with ultra-high vacuum conditions. Unfortunately, research in this area has yet to yield practical results for industrially effective gripper prototyping. This is primarily due to the inherent complexity of electro-adhesive technology, which operates on basic capacitive principles that does not find satisfying physical descriptions. This thesis aims to address these challenges through a series of studies, starting with the manufacturing process and testing of an EAD that has become the standard in our laboratory. It then delves into material and electrode geometry studies to enhance system performance, ultimately presenting potential industrial applications of the technology. All the presented results are encouraging, as they have yielded shear force values three times higher than those previously reported in the literature. The various applications have demonstrated the significant effectiveness of EADs as brakes or, more broadly, in exerting shear forces. This opens up the possibility of utilizing cutting-edge technologies to push the boundaries of technology to the fullest.