4 resultados para Warner Bros
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Forecasting the time, location, nature, and scale of volcanic eruptions is one of the most urgent aspects of modern applied volcanology. The reliability of probabilistic forecasting procedures is strongly related to the reliability of the input information provided, implying objective criteria for interpreting the historical and monitoring data. For this reason both, detailed analysis of past data and more basic research into the processes of volcanism, are fundamental tasks of a continuous information-gain process; in this way the precursor events of eruptions can be better interpreted in terms of their physical meanings with correlated uncertainties. This should lead to better predictions of the nature of eruptive events. In this work we have studied different problems associated with the long- and short-term eruption forecasting assessment. First, we discuss different approaches for the analysis of the eruptive history of a volcano, most of them generally applied for long-term eruption forecasting purposes; furthermore, we present a model based on the characteristics of a Brownian passage-time process to describe recurrent eruptive activity, and apply it for long-term, time-dependent, eruption forecasting (Chapter 1). Conversely, in an effort to define further monitoring parameters as input data for short-term eruption forecasting in probabilistic models (as for example, the Bayesian Event Tree for eruption forecasting -BET_EF-), we analyze some characteristics of typical seismic activity recorded in active volcanoes; in particular, we use some methodologies that may be applied to analyze long-period (LP) events (Chapter 2) and volcano-tectonic (VT) seismic swarms (Chapter 3); our analysis in general are oriented toward the tracking of phenomena that can provide information about magmatic processes. Finally, we discuss some possible ways to integrate the results presented in Chapters 1 (for long-term EF), 2 and 3 (for short-term EF) in the BET_EF model (Chapter 4).
Resumo:
This thesis is divided in three chapters. In the first chapter we analyse the results of the world forecasting experiment run by the Collaboratory for the Study of Earthquake Predictability (CSEP). We take the opportunity of this experiment to contribute to the definition of a more robust and reliable statistical procedure to evaluate earthquake forecasting models. We first present the models and the target earthquakes to be forecast. Then we explain the consistency and comparison tests that are used in CSEP experiments to evaluate the performance of the models. Introducing a methodology to create ensemble forecasting models, we show that models, when properly combined, are almost always better performing that any single model. In the second chapter we discuss in depth one of the basic features of PSHA: the declustering of the seismicity rates. We first introduce the Cornell-McGuire method for PSHA and we present the different motivations that stand behind the need of declustering seismic catalogs. Using a theorem of the modern probability (Le Cam's theorem) we show that the declustering is not necessary to obtain a Poissonian behaviour of the exceedances that is usually considered fundamental to transform exceedance rates in exceedance probabilities in the PSHA framework. We present a method to correct PSHA for declustering, building a more realistic PSHA. In the last chapter we explore the methods that are commonly used to take into account the epistemic uncertainty in PSHA. The most widely used method is the logic tree that stands at the basis of the most advanced seismic hazard maps. We illustrate the probabilistic structure of the logic tree, and then we show that this structure is not adequate to describe the epistemic uncertainty. We then propose a new probabilistic framework based on the ensemble modelling that properly accounts for epistemic uncertainties in PSHA.