2 resultados para Walnut.

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Bioactive compounds" are extranutritional constituents that typically occur in small quantities in food. They are being intensively studied to evaluate their effects on health. Bioactive compounds include both water soluble compounds, such as phenolics, and lipidic substances such as n-3 fatty acids, tocopherols and sterols. Phenolic compounds, tocopherols and sterols are present in all plants and have been studied extensively in cereals, nuts and oil. n-3 fatty acids are present in fish and all around the vegetable kingdom. The aim of the present work was the determination of bioactive and potentially toxic compounds in cereal based foods and nuts. The first section of this study was focused on the determination of bioactive compounds in cereals. Because of that the different forms of phytosterols were investigated in hexaploid and tetraploid wheats. Hexaploid cultivars were the best source of esterified sterols (40.7% and 37.3% of total sterols for Triticum aestivum and Triticum spelta, respectively). Significant amounts of free sterols (65.5% and 60.7% of total sterols for Triticum durum and Triticum dicoccon, respectively) were found in the tetraploid cultivars. Then, free and bound phenolic compounds were identified in barley flours. HPLCESI/ MSD analysis in negative and positive ion mode established that barley free flavan-3- ols and proanthocyanidins were four dimers and four trimers having (epi)catechin and/or (epi)gallocatechin (C and/or GC) subunits. Hydroxycinnamic acids and their derivatives were the main bound phenols in barley flours. The results obtained demonstrated that barley flours were rich in phenolic compounds that showed high antioxidant activity. The study also examined the relationships between phenolic compounds and lipid oxidation of bakery. To this purpose, the investigated barley flours were used in the bakery production. The formulated oven products presented an interesting content of phenolic compounds, but they were not able to contain the lipid oxidation. Furthermore, the influence of conventional packaging on lipid oxidation of pasta was evaluated in n-3 enriched spaghetti and egg spaghetti. The results proved that conventional packaging was not appropriated to preserve pasta from lipid oxidation; in fact, pasta that was exposed to light showed a high content of potentially toxic compounds derived from lipid oxidation (such as peroxide, oxidized fatty acids and COPs). In the second section, the content of sterols, phenolic compounds, n-3 fatty acids and tocopherols in walnuts were reported. Rapid analytical techniques were used to analyze the lipid fraction and to characterize phenolic compounds in walnuts. Total lipid chromatogram was used for the simultaneous determination of the profile of sterols and tocopherols. Linoleic and linolenic acids were the most representative n-6 and n-3 essential dietary fatty acids present in these nuts. Walnuts contained substantial amounts of γ- and δ-tocopherol, which explained their antioxidant properties. Sitosterol, Δ5-avenasterol and campesterol were the major free sterols found. Capillary electrophoresis coupled to DAD and microTOF was utilized to determine phenolic content of walnut. A new compound in walnut ((2E,4E)- 8-hydroxy-2,7-dimethyl-2,4-decadiene-1,10-dioic acid 6-O-β-D-glucopiranosyl ester, [M−H]− 403.161m/z) with a structure similar to glansreginins was also identified. Phenolic compounds corresponded to 14–28% of total polar compounds quantified. Aglycone and glycosylated ellagic acid represented the principal components and account for 64–75% of total phenols in walnuts. However, the sum of glansreginins A, B and ((2E,4E)-8-hydroxy- 2,7-dimethyl-2,4-decadiene-1,10-dioic acid 6-O-β-D-glucopiranosyl ester was in the range of 72–86% of total quantified compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was decided to carry out a morphological and molecular characterization of the Italian Alternaria isolatescollected from apple , and evaluate their pathogenicity and subsequently combining the data collected. The strain collection (174 isolates) was constructed by collecting material (received from extension service personnel) between June and August of 2007, 2008, and 2009. A Preliminary bioassays were performed on detached plant materials (fruit and leaf wounded and unwounded), belonging to the Golden cultivar, with two different kind of inoculation (conidial suspension and conidial filtrate). Symptoms were monitored daily and a value of pathogenicity score (P.S.) was assigned on the basis of the diameter of the necrotic area that developed. On the basis of the bioassays, the number of isolates to undergo further molecular analysis was restricted to a representative set of single spore strains (44 strains). Morphological characteristics of the colony and sporulation pattern were determined according to previous systematic work on small-spored Alternaria spp. (Pryor and Michaelides, 2002 and Hong et al., 2006). Reference strains (Alternaria alternata, Alternaria tenuissima, Alternaria arborescens and four Japanese strains of Alternaria alternata mali pathotype), used in the study were kindly provided by Prof. Barry Pryor, who allows a open access to his own fungal collection. Molecular characterization was performed combining and comparing different data sets obtained from distinct molecular approach: 1) investigation of specific loci and 2) fingerprinting based on diverse randomly selected polymorphic sites of the genome. As concern the single locus analysis, it was chosen to sequence the EndoPG partial gene and three anonymous region (OPA1-3, OPA2- and OPa10-2). These markers has revealed a powerful tool in the latter systematic works on small-spored Alternaria spp. In fact, as reported in literature small-spored Alternaria taxonomy is complicated due to the inability to resolve evolutionary relationships among the taxa because of the lack of variability in the markers commonly used in fungi systematic. The three data set together provided the necessary variation to establish the phylogenetic relationships among the Italian isolates of Alternaria spp. On Italian strains these markers showed a variable number of informative sites (ranging from 7 for EndoPg to 85 for OPA1-3) and the parsimony analysis produced different tree topologies all concordant to define A. arborescens as a mophyletic clade. Fingerprinting analysis (nine ISSR primers and eight AFLP primers combination) led to the same result: a monophyleic A. arborescens clade and one clade containing both A. tenuissima and the A. alternata strains. This first attempt to characterize Italian Alternaria species recovered from apple produced concordant results with what was already described in a similar phylogenetic study on pistachio (Pryor and Michaelides, 2002), on walnut and hazelnut (Hong et al., 2006), apple (Kang et al., 2002) and citurus (Peever et al., 2004). Together with these studies, this research demonstrates that the three morphological groups are widely distributed and occupy similar ecological niches. Furthermore, this research suggest that these Alternaria species exhibit a similar infection pattern despite the taxonomic and pathogenic differences. The molecular characterization of the pathogens is a fundamental step to understanding the disease that is spreading in the apple orchards of the north Italy. At the beginning the causal agent was considered as Alteraria alternata (Marshall and Bertagnoll, 2006). Their preliminary studies purposed a pathogenic system related to the synthesis of toxins. Experimental data of our bioassays suggest an analogous hypothesis, considering that symptoms could be induced after inoculating plant material with solely the filtrate from pathogenic strains. Moreover, positive PCR reactions using AM-toxin gene specific primers, designed for identification of apple infecting Alternaria pathovar, led to a hypothesis that a host specific toxin (toxins) were involved. It remains an intriguing challenge to discover or not if the agent of the “Italian disease” is the same of the one previously typified as Alternaria mali, casual agent of the apple blotch disease.