2 resultados para Wall teichoic acids biosynthesis

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the brain, mutations in SLC25A12 gene encoding AGC1 cause an ultra-rare genetic disease reported as a developmental and epileptic encephalopathy associated with global cerebral hypomyelination. Symptoms of the disease include diffused hypomyelination, arrested psychomotor development, severe hypotonia, seizures and are common to other neurological and developmental disorders. Amongst the biological components believed to be most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination. Recent studies (Poeta et al, 2022) have also shown how altered levels of transcription factors and epigenetic modifications greatly affect proliferation and differentiation in oligodendrocyte precursor cells (OPCs). In this study we explore the transcriptomic landscape of Agc1 in two different system models: OPCs silenced for Agc1 and iPSCs from human patients differentiated to neural progenitors. Analyses range from differential expression analysis, alternative splicing, master regulator analysis. ATAC-seq results on OPCs were integrated with results from RNA-Seq to assess the activity of a TF based on the accessibility data from its putative targets, which allows to integrate RNA-Seq data to infer their role as either activators or repressors. All the findings for this model were also integrated with early data from iPSCs RNA-seq results, looking for possible commonalities between the two different system models, among which we find a downregulation in genes encoding for SREBP, a transcription factor regulating fatty acids biosynthesis, a key process for myelination which could explain the hypomyelinated state of patients. We also find that in both systems cells tend to form more neurites, likely losing their ability to differentiate, considering their progenitor state. We also report several alterations in the chromatin state of cells lacking Agc1, which confirms the hypothesis for which Agc1 is not a disease restricted only to metabolic alterations in the cells, but there is a profound shift of the regulatory state of these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD thesis is aimed at studying the possible pathways and the mechanisms that can trigger oxylipins biosynthesis, and particularly that of short chain aldehydes and alcohols, in Lactobacillus helveticus, also in the presence of oxidative stress, using a totally labelled linoleic acid as precursor. In plants and fungi these molecules, involved in defence mechanisms against pathogens and in communication systems, derive from the oxidation of cellular unsaturated fatty acids (UFAs) and their accumulation is associated with stress exposure. Since some oxylipins are produced also by lactobacilli, it is possible to hypothesize that a metabolic pathway from UFAs to oxylipins, similar to what happens in plants and fungi, is present also in lactic acid bacteria. The results obtained pointed out that some volatile molecules are the result of UFAs catabolism, since they appear only when cells are incubated in their presence. Labelled linoleic acid is integrated in the membrane and subsequently transformed into aldehydes and alcohols, whose extent and carbon atoms number depend on stress exposure. The enzymes responsible for this metabolic pathway in plants and fungi (e.g. lipoxygenase, dioxygenase) seem to be absent in Lactobacillus helveticus and in other lactobacilli. Proteomic analyses show the over expression of many proteins, including thioredoxin reductase (part of the bacterial oxidative defence system), mainly in cells grown with linoleic acid without oxidative stress exposure, confirming that linoleic acid itself induces oxidative stress. 6 general oxidoreductases (class including dioxygenases and peroxidase) were found and therefore a deeper investigation on them could be productive in elucidating all steps involved in oxylipins biosynthesis in bacteria. Due to the multiple role of oxylipins (flavouring agents, antimicrobial compounds and interspecific signalling molecules) the identification of genes involved and regulating factors should have an important biotechnological impact, also allowing the overproduction of selected bioactive molecules.