2 resultados para WINTER SNOW
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Air quality represents a key issue in the so-called pollution “hot spots”: environments in which anthropogenic sources are concentrated and dispersion of pollutants is limited. One of these environments, the Po Valley, normally experiences exceedances of PM10 and PM2.5 concentration limits, especially in winter when the ventilation of the lower layers of the atmosphere is reduced. This thesis provides a highlight of the chemical properties of particulate matter and fog droplets in the Po Valley during the cold season, when fog occurrence is very frequent. Fog-particles interactions were investigated with the aim to determine their impact on the regional air quality. Size-segregated aerosol samples were collected in Bologna, urban site, and San Pietro Capofiume (SPC), rural site, during two campaigns (November 2011; February 2013) in the frame of Supersito project. The comparison between particles size-distribution and chemical composition in both sites showed the relevant contribution of the regional background and secondary processes in determining the Po Valley aerosol concentration. Occurrence of fog in November 2011 campaign in SPC allowed to investigate the role of fog formation and fog chemistry in the formation, processing and deposition of PM10. Nucleation scavenging was investigated with relation to the size and the chemical composition of particles. We found that PM1 concentration is reduced up to 60% because of fog scavenging. Furthermore, aqueous-phase secondary aerosol formation mechanisms were investigated through time-resolved measurements. In SPC fog samples have been systematically collected and analysed since the nineties; a 20 years long database has been assembled. This thesis reports for the first time the results of this long time series of measurements, showing a decrease of sulphate and nitrate concentration and an increase of pH that reached values close to neutrality. A detailed discussion about the occurred changes in fog water composition over two decades is presented.
Resumo:
The thesis is divided in three chapters, each one covering one topic. Initially, the thermo-mechanical and impact properties of materials used for back protectors have been analysed. Dynamical mechanical analysis (DMTA) has shown that materials used for soft-shell protectors present frequency-sensitive properties. Furthermore, through impact tests, the shock absorbing characteristics of the materials have been investigated proving the differences between soft and hard-shell protectors; moreover it has been demonstrated that the materials used for soft-shell protectors maintain their protective properties after multi-impacts. The second chapter covers the effect of the visco-elastic properties of the thermoplastic polymers on the flexural and rebound behaviours of ski boots. DMTA analysis on the materials and flexural and rebound testing on the boots have been performed. A comparison of the results highlighted a correlation between the visco-elastic properties and the flexural and rebound behaviour of ski boots. The same experimental methods have been used to investigate the influence of the design on the flexural and rebound behaviours. Finally in the third chapter the thermoplastic materials employed for the construction of ski boots soles have been characterized in terms of chemical composition, hardness, crystallinity, surface roughness and coefficient of friction (COF). The results showed a relation between material hardness and grip, in particular softer materials provide more grip with respect to harder materials. On the contrary, the surface roughness has a negative effect on friction because of the decrease in contact area. The measure of grip on inclined wet surfaces showed again a relation between hardness and grip. The performance ranking of the different materials has been the same for the COF and for the slip angle tests, indicating that COF can be used as a parameter for the choice of the optimal material to be used for the soles of ski boots.