3 resultados para WEIGHT-REDUCTION
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Aims: Ripening evaluation of two different Pecorino cheese varieties ripened according either to a traditional method in plant and in cave. Different ripening features have been analyzed in order to evaluate the cave as possible ripening environment with the aim of obtaining a peculiar product which could also establish an added value to the cultural heritage of the local place in which it has been originally manufactured. Methods and Results: Chemical-physical features of Pecorino cheese have been initially analyzed into two different ripening environments and experimentations, among which: pH, weight reduction and subsequent water activity. Furthermore, the microbial composition has been characterized in relationship with the two different ripening environments, undertaking a variety of microbial groups, such as: lactic bacteria, staphylococci, yeasts, lactococci, enterobacteria, enterococci. Besides, an additional analysis for the in-cave adaptability evaluation has been the identification of biogenic amines inside the Pecorino cheese (2-phenilethylamine, putrescine, cadaverine, hystidine, tyramine, spermine and spermidine). Further analysis were undertaken in order to track the lipid profile evolution, reporting the concentration of the cheese free fatty acids in object, in relation with ripening time, environment and production. In order to analyse the flavour compounds present in Pecorino cheese, the SPME-GC-MS technique has been widely employed. As a result, it is confirmed the trend showed by the short-chain free fatty acids, that is to say the fatty acids which are mostly involved in conveying a stronger flavor to the cheese. With the purpose of assessing the protheolytic patterns of the above-mentioned Pecorino cheese in the two different ripening environments and testing methods, the technique SDS-PAGE has been employed into the cheese insoluble fraction, whereas the SDS-PAGE technique has been carried out into the cheese soluble portion. Furthermore, different isolated belonging to various microbial groups have been genotypically characterized though the ITS-PCR technique with the aim to identify the membership species. With reference to lactic bacillus the characterized species are: Lactobacillus brevis, Lactobacillus curvatus and Lactobacillus paraplantarum. With reference to lactococci the predominant species is Lactococcus lactis, coming from the employed starter used in the cheese manufacturing. With reference to enterococcus, the predominant species are Enterococcus faecium and Enterococcus faecalis. Moreover, Streptococcus termophilus and Streptococcus macedonicus have been identified too. For staphylococci the identified species are Staphyilococcus equorum, Staphylococcus saprophyfiticus and Staphylococcus xylosus. Finally, a sensorial analysis has been undertaken through on one side a consumer test made by inexperienced consumers, and on the other side through a panel test achieved by expert consumers. From such test Pecorino cheese ripened in cave were found to be more pleasant in comparison with Pecorino cheese ripened in plant. Conclusions: The proposed approach and the undertaken analysis showed the cave as preferential ripening environment for Pecorino cheese and for the development of a more palatable product and safer for consumers’ health.
Resumo:
The research was carried out to investigate of main elements of salt stress response in two strawberry cultivars, Elsanta and Elsinore. Plants were grown under 0, 10, 20 and 40 mM NaCl for 80 days. Salinity dramatically affected growth in both cultivars, although Elsinore appeared to be more impaired than Elsanta. Moreover a significant reduction of leaf photosynthesis, evaporation, and stomatal conductance was recorded 24 hrs after the stress was applied in both cultivars, whereas physiological functions were differentially restored after acclimation. However, cv. Elsanta had more efficient leaf gas exchange and water status than cv. Elsinore. In general, Fruit yield reduced upon salinization, wheares fruit quality concerning fruit taste, aroma, appearance, total soluble solids and titratable acidity, did not change but rather was enhanced under moderate salinity. On the other hand fruit quality was impaired at severe salt stress. Fruit antioxidant content and antioxidant capacity were enhanced significantly by increasing salt concentration in both cultivars. The oxidative effects of the stress were defined by the measures of some enzymatic activities and lipid peroxidation. Consistently, an increase in superoxide dismutase (SOD), catalase (CAT), peroxide dismutase (POD) enzymes and higher content of proline and soluble proteins were observed in cv. Elsinore than in cv. Elsanta. The increase coincided with a decrease in lipid peroxidation. The research confirmed that although strawberry cultivars were sensitive to salinity, difference between cultivars exist; The experiment revealed that cv. Elsanta could stand severe salt stress, which was lethal to cv. Elsinore. The parameters measured in the previous experiment were proposed as early screening tools for the salt stress response in nine strawberry genotypes. The results showed that, wheares Elsanta and Elsinore cultivars had a lower dry weight reduction at 40 mM NaCl among cultivars, Naiad, Kamila, and Camarosa were the least salt-sensitive cultivars among the screened.
Resumo:
Due to the interest of general public and the industrial stakeholders, new challenges and demands are rising in aircraft design. The sustainability is taking its place amongst more traditional design factors, such as safety, performances and costs. Sustainability is both environmental and economic, and among the factors contributing to economic sustainability, there is also passengers' comfort. In order to win these two challenges, they must be considered in the early stages of aircraft design. In this work, the focus is on emissions generation and acoustic comfort, aiming at reducing pollution and internal noise in the preliminary design phases. These results can be achieved with both unconventional aircraft configurations and advanced materials, which also require new numerical formulations to be assessed. In this research, on one hand, the windowless configuration for a commercial aircraft is studied with traditional preliminary design methods in order to achieve a weight reduction and consequently a return in terms of emissions and costs. On the other hand, a new class of insulating materials, the acoustic metamaterials, is applied on the passenger cabin lining panels. The complex kinematic behaviour of these advanced materials is studied through the Carrera's Unified Formulation, that enhances a wide class of powerful refined shell and beam theories with a unique formulation.