24 resultados para WBAN Bluetooth Wearable Sensors Cupid RTOS RTX RL-ARM cortex-m4 WSN parkinson

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in biomedical signal acquisition systems for motion analysis have led to lowcost and ubiquitous wearable sensors which can be used to record movement data in different settings. This implies the potential availability of large amounts of quantitative data. It is then crucial to identify and to extract the information of clinical relevance from the large amount of available data. This quantitative and objective information can be an important aid for clinical decision making. Data mining is the process of discovering such information in databases through data processing, selection of informative data, and identification of relevant patterns. The databases considered in this thesis store motion data from wearable sensors (specifically accelerometers) and clinical information (clinical data, scores, tests). The main goal of this thesis is to develop data mining tools which can provide quantitative information to the clinician in the field of movement disorders. This thesis will focus on motor impairment in Parkinson's disease (PD). Different databases related to Parkinson subjects in different stages of the disease were considered for this thesis. Each database is characterized by the data recorded during a specific motor task performed by different groups of subjects. The data mining techniques that were used in this thesis are feature selection (a technique which was used to find relevant information and to discard useless or redundant data), classification, clustering, and regression. The aims were to identify high risk subjects for PD, characterize the differences between early PD subjects and healthy ones, characterize PD subtypes and automatically assess the severity of symptoms in the home setting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tracking activities during daily life and assessing movement parameters is essential for complementing the information gathered in confined environments such as clinical and physical activity laboratories for the assessment of mobility. Inertial measurement units (IMUs) are used as to monitor the motion of human movement for prolonged periods of time and without space limitations. The focus in this study was to provide a robust, low-cost and an unobtrusive solution for evaluating human motion using a single IMU. First part of the study focused on monitoring and classification of the daily life activities. A simple method that analyses the variations in signal was developed to distinguish two types of activity intervals: active and inactive. Neural classifier was used to classify active intervals; the angle with respect to gravity was used to classify inactive intervals. Second part of the study focused on extraction of gait parameters using a single inertial measurement unit (IMU) attached to the pelvis. Two complementary methods were proposed for gait parameters estimation. First method was a wavelet based method developed for the estimation of gait events. Second method was developed for estimating step and stride length during level walking using the estimations of the previous method. A special integration algorithm was extended to operate on each gait cycle using a specially designed Kalman filter. The developed methods were also applied on various scenarios. Activity monitoring method was used in a PRIN’07 project to assess the mobility levels of individuals living in a urban area. The same method was applied on volleyball players to analyze the fitness levels of them by monitoring their daily life activities. The methods proposed in these studies provided a simple, unobtrusive and low-cost solution for monitoring and assessing activities outside of controlled environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Movement analysis carried out in laboratory settings is a powerful, but costly solution since it requires dedicated instrumentation, space and personnel. Recently, new technologies such as the magnetic and inertial measurement units (MIMU) are becoming widely accepted as tools for the assessment of human motion in clinical and research settings. They are relatively easy-to-use and potentially suitable for estimating gait kinematic features, including spatio-temporal parameters. The objective of this thesis regards the development and testing in clinical contexts of robust MIMUs based methods for assessing gait spatio-temporal parameters applicable across a number of different pathological gait patterns. First, considering the need of a solution the least obtrusive as possible, the validity of the single unit based approach was explored. A comparative evaluation of the performance of various methods reported in the literature for estimating gait temporal parameters using a single unit attached to the trunk first in normal gait and then in different pathological gait conditions was performed. Then, the second part of the research headed towards the development of new methods for estimating gait spatio-temporal parameters using shank worn MIMUs on different pathological subjects groups. In addition to the conventional gait parameters, new methods for estimating the changes of the direction of progression were explored. Finally, a new hardware solution and relevant methodology for estimating inter-feet distance during walking was proposed. Results of the technical validation of the proposed methods at different walking speeds and along different paths against a gold standard were reported and showed that the use of two MIMUs attached to the lower limbs associated with a robust method guarantee a much higher accuracy in determining gait spatio-temporal parameters. In conclusion, the proposed methods could be reliably applied to various abnormal gaits obtaining in some cases a comparable level of accuracy with respect to normal gait.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Falls are caused by complex interaction between multiple risk factors which may be modified by age, disease and environment. A variety of methods and tools for fall risk assessment have been proposed, but none of which is universally accepted. Existing tools are generally not capable of providing a quantitative predictive assessment of fall risk. The need for objective, cost-effective and clinically applicable methods would enable quantitative assessment of fall risk on a subject-specific basis. Tracking objectively falls risk could provide timely feedback about the effectiveness of administered interventions enabling intervention strategies to be modified or changed if found to be ineffective. Moreover, some of the fundamental factors leading to falls and what actually happens during a fall remain unclear. Objectively documented and measured falls are needed to improve knowledge of fall in order to develop more effective prevention strategies and prolong independent living. In the last decade, several research groups have developed sensor-based automatic or semi-automatic fall risk assessment tools using wearable inertial sensors. This approach may also serve to detect falls. At the moment, i) several fall-risk assessment studies based on inertial sensors, even if promising, lack of a biomechanical model-based approach which could provide accurate and more detailed measurements of interests (e.g., joint moments, forces) and ii) the number of published real-world fall data of older people in a real-world environment is minimal since most authors have used simulations with healthy volunteers as a surrogate for real-world falls. With these limitations in mind, this thesis aims i) to suggest a novel method for the kinematics and dynamics evaluation of functional motor tasks, often used in clinics for the fall-risk evaluation, through a body sensor network and a biomechanical approach and ii) to define the guidelines for a fall detection algorithm based on a real-world fall database availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Procedures for quantitative walking analysis include the assessment of body segment movements within defined gait cycles. Recently, methods to track human body motion using inertial measurement units have been suggested. It is not known if these techniques can be readily transferred to clinical measurement situations. This work investigates the aspects necessary for one inertial measurement unit mounted on the lower back to track orientation, and determine spatio-temporal features of gait outside the confines of a conventional gait laboratory. Apparent limitations of different inertial sensors can be overcome by fusing data using methods such as a Kalman filter. The benefits of optimizing such a filter for the type of motion are unknown. 3D accelerations and 3D angular velocities were collected for 18 healthy subjects while treadmill walking. Optimization of Kalman filter parameters improved pitch and roll angle estimates when compared to angles derived using stereophotogrammetry. A Weighted Fourier Linear Combiner method for estimating 3D orientation angles by constructing an analytical representation of angular velocities and allowing drift free integration is also presented. When tested this method provided accurate estimates of 3D orientation when compared to stereophotogrammetry. Methods to determine spatio-temporal features from lower trunk accelerations generally require knowledge of sensor alignment. A method was developed to estimate the instants of initial and final ground contact from accelerations measured by a waist mounted inertial device without rigorous alignment. A continuous wavelet transform method was used to filter and differentiate the signal and derive estimates of initial and final contact times. The technique was tested with data recorded for both healthy and pathologic (hemiplegia and Parkinson’s disease) subjects and validated using an instrumented mat. The results show that a single inertial measurement unit can assist whole body gait assessment however further investigation is required to understand altered gait timing in some pathological subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

in the everyday clinical practice. Having this in mind, the choice of a simple setup would not be enough because, even if the setup is quick and simple, the instrumental assessment would still be in addition to the daily routine. The will to overcome this limit has led to the idea of instrumenting already existing and widely used functional tests. In this way the sensor based assessment becomes an integral part of the clinical assessment. Reliable and validated signal processing methods have been successfully implemented in Personal Health Systems based on smartphone technology. At the end of this research project there is evidence that such solution can really and easily used in clinical practice in both supervised and unsupervised settings. Smartphone based solution, together or in place of dedicated wearable sensing units, can truly become a pervasive and low-cost means for providing suitable testing solutions for quantitative movement analysis with a clear clinical value, ultimately providing enhanced balance and mobility support to an aging population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wearable inertial and magnetic measurements units (IMMU) are an important tool for underwater motion analysis because they are swimmer-centric, they require only simple measurement set-up and they provide the performance results very quickly. In order to estimate 3D joint kinematics during motion, protocols were developed to transpose the IMMU orientation estimation to a biomechanical model. The aim of the thesis was to validate a protocol originally propositioned to estimate the joint angles of the upper limbs during one-degree-of-freedom movements in dry settings and herein modified to perform 3D kinematics analysis of shoulders, elbows and wrists during swimming. Eight high-level swimmers were assessed in the laboratory by means of an IMMU while simulating the front crawl and breaststroke movements. A stereo-photogrammetric system (SPS) was used as reference. The joint angles (in degrees) of the shoulders (flexion-extension, abduction-adduction and internal-external rotation), the elbows (flexion-extension and pronation-supination), and the wrists (flexion-extension and radial-ulnar deviation) were estimated with the two systems and compared by means of root mean square errors (RMSE), relative RMSE, Pearson’s product-moment coefficient correlation (R) and coefficient of multiple correlation (CMC). Subsequently, the athletes were assessed during pool swimming trials through the IMMU. Considering both swim styles and all joint degrees of freedom modeled, the comparison between the IMMU and the SPS showed median values of RMSE lower than 8°, representing 10% of overall joint range of motion, high median values of CMC (0.97) and R (0.96). These findings suggest that the protocol accurately estimated the 3D orientation of the shoulders, elbows and wrists joint during swimming with accuracy adequate for the purposes of research. In conclusion, the proposed method to evaluate the 3D joint kinematics through IMMU was revealed to be a useful tool for both sport and clinical contexts.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This artwork reports on two different projects that were carried out during the three years of Doctor of the Philosophy course. In the first years a project regarding Capacitive Pressure Sensors Array for Aerodynamic Applications was developed in the Applied Aerodynamic research team of the Second Faculty of Engineering, University of Bologna, Forlì, Italy, and in collaboration with the ARCES laboratories of the same university. Capacitive pressure sensors were designed and fabricated, investigating theoretically and experimentally the sensor’s mechanical and electrical behaviours by means of finite elements method simulations and by means of wind tunnel tests. During the design phase, the sensor figures of merit are considered and evaluated for specific aerodynamic applications. The aim of this work is the production of low cost MEMS-alternative devices suitable for a sensor network to be implemented in air data system. The last two year was dedicated to a project regarding Wireless Pressure Sensor Network for Nautical Applications. Aim of the developed sensor network is to sense the weak pressure field acting on the sail plan of a full batten sail by means of instrumented battens, providing a real time differential pressure map over the entire sail surface. The wireless sensor network and the sensing unit were designed, fabricated and tested in the faculty laboratories. A static non-linear coupled mechanical-electrostatic simulation, has been developed to predict the pressure versus capacitance static characteristic suitable for the transduction process and to tune the geometry of the transducer to reach the required resolution, sensitivity and time response in the appropriate full scale pressure input A time dependent viscoelastic error model has been inferred and developed by means of experimental data in order to model, predict and reduce the inaccuracy bound due to the viscolelastic phenomena affecting the Mylar® polyester film used for the sensor diaphragm. The development of the two above mentioned subjects are strictly related but presently separately in this artwork.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precipitation retrieval over high latitudes, particularly snowfall retrieval over ice and snow, using satellite-based passive microwave spectrometers, is currently an unsolved problem. The challenge results from the large variability of microwave emissivity spectra for snow and ice surfaces, which can mimic, to some degree, the spectral characteristics of snowfall. This work focuses on the investigation of a new snowfall detection algorithm specific for high latitude regions, based on a combination of active and passive sensors able to discriminate between snowing and non snowing areas. The space-borne Cloud Profiling Radar (on CloudSat), the Advanced Microwave Sensor units A and B (on NOAA-16) and the infrared spectrometer MODIS (on AQUA) have been co-located for 365 days, from October 1st 2006 to September 30th, 2007. CloudSat products have been used as truth to calibrate and validate all the proposed algorithms. The methodological approach followed can be summarised into two different steps. In a first step, an empirical search for a threshold, aimed at discriminating the case of no snow, was performed, following Kongoli et al. [2003]. This single-channel approach has not produced appropriate results, a more statistically sound approach was attempted. Two different techniques, which allow to compute the probability above and below a Brightness Temperature (BT) threshold, have been used on the available data. The first technique is based upon a Logistic Distribution to represent the probability of Snow given the predictors. The second technique, defined Bayesian Multivariate Binary Predictor (BMBP), is a fully Bayesian technique not requiring any hypothesis on the shape of the probabilistic model (such as for instance the Logistic), which only requires the estimation of the BT thresholds. The results obtained show that both methods proposed are able to discriminate snowing and non snowing condition over the Polar regions with a probability of correct detection larger than 0.5, highlighting the importance of a multispectral approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the design and characterization of new and more efficient luminescent tools, in particular sensors and labels, for analytical chemistry, medical diagnostics and imaging. Actually both the increasing temporal and spatial resolutions that are demanded by those branches, coupled to a sensitivity that is required to reach the single molecule resolution, can be provided by the wide range of techniques based on luminescence spectroscopy. As far as the development of new chemical sensors is concerned, as chemists we were interested in the preparation of new, efficient, sensing materials. In this context, we kept developing new molecular chemosensors, by exploiting the supramolecular approach, for different classes of analytes. In particular we studied a family of luminescent tetrapodal-hosts based on aminopyridinium units with pyrenyl groups for the detection of anions. These systems exhibited noticeable changes in the photophysical properties, depending on the nature of the anion; in particular, addition of chloride resulted in a conformational change, giving an initial increase in excimeric emission. A good selectivity for dicarboxylic acid was also found. In the search for higher sensitivities, we moved our attention also to systems able to perform amplification effects. In this context we described the metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with different complexing units and we highlighted, for one of them, a ten-fold amplification of the response in case of addition of Zn2+, Cu2+ and Hg2+ ions. In addition, we were able to demonstrate the formation of complexes with Yb3+ an Er3+ and an efficient sensitization of their typical metal centered NIR emission upon excitation of the polymer structure, this feature being of particular interest for their possible applications in optical imaging and in optical amplification for telecommunication purposes. An amplification effect was also observed during this research in silica nanoparticles derivatized with a suitable zinc probe. In this case we were able to prove, for the first time, that nanoparticles can work as “off-on” chemosensors with signal amplification. Fluorescent silica nanoparticles can be thus seen as innovative multicomponent systems in which the organization of photophysically active units gives rise to fruitful collective effects. These precious effects can be exploited for biological imaging, medical diagnostic and therapeutics, as evidenced also by some results reported in this thesis. In particular, the observed amplification effect has been obtained thanks to a suitable organization of molecular probe units onto the surface of the nanoparticles. In the effort of reaching a deeper inside in the mechanisms which lead to the final amplification effects, we also attempted to find a correlation between the synthetic route and the final organization of the active molecules in the silica network, and thus with those mutual interactions between one another which result in the emerging, collective behavior, responsible for the desired signal amplification. In this context, we firstly investigated the process of formation of silica nanoparticles doped with pyrene derivative and we showed that the dyes are not uniformly dispersed inside the silica matrix; thus, core-shell structures can be formed spontaneously in a one step synthesis. Moreover, as far as the design of new labels is concerned, we reported a new synthetic approach to obtain a class of robust, biocompatible silica core-shell nanoparticles able to show a long-term stability. Taking advantage of this new approach we also showed the synthesis and photophysical properties of core-shell NIR absorbing and emitting materials that proved to be very valuable for in-vivo imaging. In general, the dye doped silica nanoparticles prepared in the framework of this project can conjugate unique properties, such as a very high brightness, due to the possibility to include many fluorophores per nanoparticle, high stability, because of the shielding effect of the silica matrix, and, to date, no toxicity, with a simple and low-cost preparation. All these features make these nanostructures suitable to reach the low detection limits that are nowadays required for effective clinical and environmental applications, fulfilling in this way the initial expectations of this research project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impairment of postural control is a common consequence of Parkinson's disease (PD) that becomes more and more critical with the progression of the disease, in spite of the available medications. Postural instability is one of the most disabling features of PD and induces difficulties with postural transitions, initiation of movements, gait disorders, inability to live independently at home, and is the major cause of falls. Falls are frequent (with over 38% falling each year) and may induce adverse consequences like soft tissue injuries, hip fractures, and immobility due to fear of falling. As the disease progresses, both postural instability and fear of falling worsen, which leads patients with PD to become increasingly immobilized. The main aims of this dissertation are to: 1) detect and assess, in a quantitative way, impairments of postural control in PD subjects, investigate the central mechanisms that control such motor performance, and how these mechanism are affected by levodopa; 2) develop and validate a protocol, using wearable inertial sensors, to measure postural sway and postural transitions prior to step initiation; 3) find quantitative measures sensitive to impairments of postural control in early stages of PD and quantitative biomarkers of disease progression; and 4) test the feasibility and effects of a recently-developed audio-biofeedback system in maintaining balance in subjects with PD. In the first set of studies, we showed how PD reduces functional limits of stability as well as the magnitude and velocity of postural preparation during voluntary, forward and backward leaning while standing. Levodopa improves the limits of stability but not the postural strategies used to achieve the leaning. Further, we found a strong relationship between backward voluntary limits of stability and size of automatic postural response to backward perturbations in control subjects and in PD subjects ON medication. Such relation might suggest that the central nervous system presets postural response parameters based on perceived maximum limits and this presetting is absent in PD patients OFF medication but restored with levodopa replacement. Furthermore, we investigated how the size of preparatory postural adjustments (APAs) prior to step initiation depend on initial stance width. We found that patients with PD did not scale up the size of their APA with stance width as much as control subjects so they had much more difficulty initiating a step from a wide stance than from a narrow stance. This results supports the hypothesis that subjects with PD maintain a narrow stance as a compensation for their inability to sufficiently increase the size of their lateral APA to allow speedy step initiation in wide stance. In the second set of studies, we demonstrated that it is possible to use wearable accelerometers to quantify postural performance during quiet stance and step initiation balance tasks in healthy subjects. We used a model to predict center of pressure displacements associated with accelerations at the upper and lower back and thigh. This approach allows the measurement of balance control without the use of a force platform outside the laboratory environment. We used wearable accelerometers on a population of early, untreated PD patients, and found that postural control in stance and postural preparation prior to a step are impaired early in the disease when the typical balance and gait intiation symptoms are not yet clearly manifested. These novel results suggest that technological measures of postural control can be more sensitive than clinical measures. Furthermore, we assessed spontaneous sway and step initiation longitudinally across 1 year in patients with early, untreated PD. We found that changes in trunk sway, and especially movement smoothness, measured as Jerk, could be used as an objective measure of PD and its progression. In the third set of studies, we studied the feasibility of adapting an existing audio-biofeedback device to improve balance control in patients with PD. Preliminary results showed that PD subjects found the system easy-to-use and helpful, and they were able to correctly follow the audio information when available. Audiobiofeedback improved the properties of trunk sway during quiet stance. Our results have many implications for i) the understanding the central mechanisms that control postural motor performance, and how these mechanisms are affected by levodopa; ii) the design of innovative protocols for measuring and remote monitoring of motor performance in the elderly or subjects with PD; and iii) the development of technologies for improving balance, mobility, and consequently quality of life in patients with balance disorders, such as PD patients with augmented biofeedback paradigms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart Environments are currently considered a key factor to connect the physical world with the information world. A Smart Environment can be defined as the combination of a physical environment, an infrastructure for data management (called Smart Space), a collection of embedded systems gathering heterogeneous data from the environment and a connectivity solution to convey these data to the Smart Space. With this vision, any application which takes advantages from the environment could be devised, without the need to directly access to it, since all information are stored in the Smart Space in a interoperable format. Moreover, according to this vision, for each entity populating the physical environment, i.e. users, objects, devices, environments, the following questions can be arise: “Who?”, i.e. which are the entities that should be identified? “Where?” i.e. where are such entities located in physical space? and “What?” i.e. which attributes and properties of the entities should be stored in the Smart Space in machine understandable format, in the sense that its meaning has to be explicitly defined and all the data should be linked together in order to be automatically retrieved by interoperable applications. Starting from this the location detection is a necessary step in the creation of Smart Environments. If the addressed entity is a user and the environment a generic environment, a meaningful way to assign the position, is through a Pedestrian Tracking System. In this work two solution for these type of system are proposed and compared. One of the two solution has been studied and developed in all its aspects during the doctoral period. The work also investigates the problem to create and manage the Smart Environment. The proposed solution is to create, by means of natural interactions, links between objects and between objects and their environment, through the use of specific devices, i.e. Smart Objects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to describe the development of motion analysis protocols for applications on upper and lower limb extremities, by using inertial sensors-based systems. Inertial sensors-based systems are relatively recent. Knowledge and development of methods and algorithms for the use of such systems for clinical purposes is therefore limited if compared with stereophotogrammetry. However, their advantages in terms of low cost, portability, small size, are a valid reason to follow this direction. When developing motion analysis protocols based on inertial sensors, attention must be given to several aspects, like the accuracy of inertial sensors-based systems and their reliability. The need to develop specific algorithms/methods and software for using these systems for specific applications, is as much important as the development of motion analysis protocols based on them. For this reason, the goal of the 3-years research project described in this thesis was achieved first of all trying to correctly design the protocols based on inertial sensors, in terms of exploring and developing which features were suitable for the specific application of the protocols. The use of optoelectronic systems was necessary because they provided a gold standard and accurate measurement, which was used as a reference for the validation of the protocols based on inertial sensors. The protocols described in this thesis can be particularly helpful for rehabilitation centers in which the high cost of instrumentation or the limited working areas do not allow the use of stereophotogrammetry. Moreover, many applications requiring upper and lower limb motion analysis to be performed outside the laboratories will benefit from these protocols, for example performing gait analysis along the corridors. Out of the buildings, the condition of steady-state walking or the behavior of the prosthetic devices when encountering slopes or obstacles during walking can also be assessed. The application of inertial sensors on lower limb amputees presents conditions which are challenging for magnetometer-based systems, due to ferromagnetic material commonly adopted for the construction of idraulic components or motors. INAIL Prostheses Centre stimulated and, together with Xsens Technologies B.V. supported the development of additional methods for improving the accuracy of MTx in measuring the 3D kinematics for lower limb prostheses, with the results provided in this thesis. In the author’s opinion, this thesis and the motion analysis protocols based on inertial sensors here described, are a demonstration of how a strict collaboration between the industry, the clinical centers, the research laboratories, can improve the knowledge, exchange know-how, with the common goal to develop new application-oriented systems.