6 resultados para WATER ESCAPE STRUCTURES

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study was performed to validate a spatial working memory task using pharmacological manipulations. The water escape T-maze, which combines the advantages of the Morris water maze and the T-maze while minimizes the disadvantages, was used. Scopolamine, a drug that affects cognitive function in spatial working memory tasks, significantly decreased the rat performance in the present delayed alternation task. Since glutamate neurotransmission plays an important role in the maintaining of working memory, we evaluated the effect of ionotropic and metabotropic glutamatergic receptors antagonists, administered alone or in combination, on rat behaviour. As the acquisition and performance of memory tasks has been linked to the expression of the immediately early gene cFos, a marker of neuronal activation, we also investigated the neurochemical correlates of the water escape T-maze after pharmacological treatment with glutamatergic antagonists, in various brain areas. Moreover, we focused our attention on the involvement of perirhinal cortex glutamatergic neurotransmission in the acquisition and/or consolidation of this particular task. The perirhinal cortex has strong and reciprocal connections with both specific cortical sensory areas and some memory-related structures, including the hippocampal formation and amygdala. For its peculiar position, perirhinal cortex has been recently regarded as a key region in working memory processes, in particular in providing temporary maintenance of information. The effect of perirhinal cortex lesions with ibotenic acid on the acquisition and consolidation of the water escape T-maze task was evaluated. In conclusion, our data suggest that the water escape T-maze could be considered a valid, simple and quite fast method to assess spatial working memory, sensible to pharmacological manipulations. Following execution of the task, we observed cFos expression in several brain regions. Furthermore, in accordance to literature, our results suggest that glutamatergic neurotransmission plays an important role in the acquisition and consolidation of working memory processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemists have long sought to extrapolate the power of biological catalysis and recognition to synthetic systems. These efforts have focused largely on low molecular weight catalysts and receptors; however, biological systems themselves rely almost exclusively on polymers, proteins and RNA, to perform complex chemical functions. Proteins and RNA are unique in their ability to adopt compact, well-ordered conformations, and specific folding provides precise spatial orientation of the functional groups that comprise the “active site”. These features suggest that identification of new polymer backbones with discrete and predictable folding propensities (“foldamers”) will provide a basis for design of molecular machines with unique capabilities. The foldamer approach complements current efforts to design unnatural properties into polypeptides and polynucleotides. The aim of this thesis is the synthesis and conformational studies of new classes of foldamers, using a peptidomimetic approach. Moreover their attitude to be utilized as ionophores, catalysts, and nanobiomaterials were analyzed in solution and in the solid state. This thesis is divided in thematically chapters that are reported below. It begins with a very general introduction (page 4) which is useful, but not strictly necessary, to the expert reader. It is worth mentioning that paragraph I.3 (page 22) is the starting point of this work and paragraph I.5 (page 32) isrequired to better understand the results of chapters 4 and 5. In chapter 1 (page 39) is reported the synthesis and conformational analysis of a novel class of foldamers containing (S)-β3-homophenylglycine [(S)-β3-hPhg] and D- 4-carboxy-oxazolidin-2-one (D-Oxd) residues in alternate order is reported. The experimental conformational analysis performed in solution by IR, 1HNMR, and CD spectroscopy unambiguously proved that these oligomers fold into ordered structures with increasing sequence length. Theoretical calculations employing ab initio MO theory suggest a helix with 11-membered hydrogenbonded rings as the preferred secondary structure type. The novel structures enrich the field of peptidic foldamers and might be useful in the mimicry of native peptides. In chapter 2 cyclo-(L-Ala-D-Oxd)3 and cyclo-(L-Ala-DOxd) 4 were prepared in the liquid phase with good overall yields and were utilized for bivalent ions chelation (Ca2+, Mg2+, Cu2+, Zn2+ and Hg2+); their chelation skill was analyzed with ESI-MS, CD and 1HNMR techniques and the best results were obtained with cyclo-(L-Ala-D-Oxd)3 and Mg2+ or Ca2+. Chapter 3 describes an application of oligopeptides as catalysts for aldol reactions. Paragraph 3.1 concerns the use of prolinamides as catalysts of the cross aldol addition of hydroxyacetone to aromatic aldeydes, whereas paragraphs 3.2 and 3.3 are about the catalyzed aldol addition of acetone to isatins. By means of DFT and AIM calculations, the steric and stereoelectronic effects that control the enantioselectivity in the cross-aldol addition of acetone to isatin catalysed by L-proline have been studied, also in the presence of small quantities of water. In chapter 4 is reported the synthesis and the analysis of a new fiber-like material, obtained from the selfaggregation of the dipeptide Boc-L-Phe-D-Oxd-OBn, which spontaneously forms uniform fibers consisting of parallel infinite linear chains arising from singleintermolecular N-H···O=C hydrogen bonds. This is the absolute borderline case of a parallel β-sheet structure. Longer oligomers of the same series with general formula Boc-(L-Phe-D-Oxd)n-OBn (where n = 2-5), are described in chapter 5. Their properties in solution and in the solid state were analyzed, in correlation with their attitude to form intramolecular hydrogen bond. In chapter 6 is reported the synthesis of imidazolidin-2- one-4-carboxylate and (tetrahydro)-pyrimidin-2-one-5- carboxylate, via an efficient modification of the Hofmann rearrangement. The reaction affords the desired compounds from protected asparagine or glutamine in good to high yield, using PhI(OAc)2 as source of iodine(III).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aims of my PhD research work have been the investigation of the redox, photophysical and electronic properties of carbon nanotubes (CNT) and their possible uses as functional substrates for the (electro)catalytic production of oxygen and as molecular connectors for Quantum-dot Molecular Automata. While for CNT many and diverse applications in electronics, in sensors and biosensors field, as a structural reinforcing in composite materials have long been proposed, the study of their properties as individual species has been for long a challenging task. CNT are in fact virtually insoluble in any solvent and, for years, most of the studies has been carried out on bulk samples (bundles). In Chapter 2 an appropriate description of carbon nanotubes is reported, about their production methods and the functionalization strategies for their solubilization. In Chapter 3 an extensive voltammetric and vis-NIR spectroelectrochemical investigation of true solutions of unfunctionalized individual single wall CNT (SWNT) is reported that permitted to determine for the first time the standard electrochemical potentials of reduction and oxidation as a function of the tube diameter of a large number of semiconducting SWNTs. We also established the Fermi energy and the exciton binding energy for individual tubes in solution and, from the linear correlation found between the potentials and the optical transition energies, one to calculate the redox potentials of SWNTs that are insufficiently abundant or absent in the samples. In Chapter 4 we report on very efficient and stable nano-structured, oxygen-evolving anodes (OEA) that were obtained by the assembly of an oxygen evolving polyoxometalate cluster, (a totally inorganic ruthenium catalyst) with a conducting bed of multiwalled carbon nanotubes (MWCNT). Here, MWCNT were effectively used as carrier of the polyoxometallate for the electrocatalytic production of oxygen and turned out to greatly increase both the efficiency and stability of the device avoiding the release of the catalysts. Our bioinspired electrode addresses the major challenge of artificial photosynthesis, i.e. efficient water oxidation, taking us closer to when we might power the planet with carbon-free fuels. In Chapter 5 a study on surface-active chiral bis-ferrocenes conveniently designed in order to act as prototypical units for molecular computing devices is reported. Preliminary electrochemical studies in liquid environment demonstrated the capability of such molecules to enter three indistinguishable oxidation states. Side chains introduction allowed to organize them in the form of self-assembled monolayers (SAM) onto a surface and to study the molecular and redox properties on solid substrates. Electrochemical studies on SAMs of these molecules confirmed their attitude to undergo fast (Nernstian) electron transfer processes generating, in the positive potential region, either the full oxidized Fc+-Fc+ or the partly oxidized Fc+-Fc species. Finally, in Chapter 6 we report on a preliminary electrochemical study of graphene solutions prepared according to an original procedure recently described in the literature. Graphene is the newly-born of carbon nanomaterials and is certainly bound to be among the most promising materials for the next nanoelectronic generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this PhD thesis is to optimize a specific multifunctional maritime structure for harbour protection and energy production, named Overtopping Breakwater for Energy Conversion (OBREC), developed by the team of the University of Campania. This device is provided with a sloping plate followed by a unique reservoir, which is linked with the machine room (where the energy conversion occurs) by means of a pipe passing through the crown wall, provided with a parapet on top of it. Therefore, the potential energy of the overtopping waves, collected inside the reservoir located above the still water level, is then converted by means of low – head turbines. In order to improve the understanding of the wave – structure interactions with OBREC, several methodologies have been used and combined together: i. analysis of recent experimental campaigns on wave overtopping discharges and pressures at the crown wall on small – scale OBREC cross sections, carried out in other laboratories by the team of the University of Campania; ii. new experiments on cross sections similar to the OBREC device, planned and carried out in the hydraulic lab at the University of Bologna in the framework of this PhD work; iii. numerical modelling with a 1 – phase incompressible fluid model IH – 2VOF, developed by the University of Cantabria, and with a 2 – phase incompressible fluid model OpenFOAM, both available from the literature; iv. numerical modelling with a new 2 – phase compressible fluid model developed in the OpenFOAM environment within this PhD work; v. analysis of the data gained from the monitoring of the OBREC prototype installation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To change unadapted water governing systems, and water users’ traditional conducts in line with climate change, understanding of systems’ structures and users’ behaviors is necessary. To this aim, comprehensive and pragmatic research was designed and implemented in the Urmia Lake Basin where due to the severe droughts, and human-made influences, especially through the agricultural development, the lake has been shrunken drastically. To analyze the water governance and conservation issues in the basin, an innovative framework was developed based on mathematical physics concepts and pro-environmental behavior theories. Accordingly, in system level (macro/meso), the problem of fit of the early-shaped water governing system associating with the function of “political-security” and “political-economic” factors in the basin was identified through mean-field models. Furthermore, the effect of a “political-environmental” factor, the Urmia Lake Restoration Program (ULRP), on reforming the system structure and hence its fit was assessed. The analysis results revealed that by revising the provincial boundaries (horizontal alternation) for the entity of Kurdistan province to permit that interact with the headquarter of West Azerbaijan province for its water demand-supply initiatives, the system fit can increase. Also, the constitution of the ULRP (vertical arrangement) not only could increase the structural fit of the water governing system to the basin, but also significantly could enhance the system fit through its water-saving policy. Besides, in individual level (micro), the governing factors of water conservation behavior of the major users/farmers were identified through rational and moral socio-psychological models. In rational approach, incorporating PMT and TPB, the SEM results demonstrated that “Perceived Vulnerability”, “Self-Efficacy”, “Response Efficacy”, “Response Cost”, “Subjective Norms” and “Institutional Trust” significantly affect the water-saving intention/behavior. Likewise, NAM based analysis as a moral approach, uncovered the significant effects of “Awareness of Consequences”, “Appraisal of Responsibility”, “Personal Norms” as well as “Place Attachment” and “Emotions” on water-saving intention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stable increase in average life expectancy and the consecutive increase in the number of cases of bone related diseases has led to a growing interest in the development of materials that can promote bone repair and/or replacement. Among the best candidates are those materials that have a high similarity to bones, in terms of composition, structure, morphology and functionality. Biomineralized tissue, and thus also bones, have three main components: water, an organic matrix and an inorganic deposit. In vertebrates, the inorganic deposit consists of what is called biological apatite, which slightly differ from stoichiometric hydroxyapatite (HA) both in crystallographic terms and in the presence of foreign atoms and species. This justifies the great attention towards calcium phosphates, which show excellent biocompatibility and bioactivity. The performances of the material and the response of the biological tissue can be further improved through their functionalization with ions, biologically active molecules and nanostructures. This thesis focuses on several possible functionalizations of calcium phosphates, and their effects on chemical properties and biological performances. In particular, the functionalizing agents include several biologically relevant ions, such as Cobalt (Co), Manganese (Mn), Strontium (Sr) and Zinc (Zn); two organic molecules, a flavonoid (Quercetin) and a polyphenol (Curcumin); and nanoparticles, namely tungsten oxide (WO3) NPs. Functionalization was carried out on various calcium phosphates: dicalcium phosphate dihydrate (DCPD), dicalcium phosphate anhydrous (DCPA) and hydroxyapatite (HA). Two different strategies of functionalization were applied: direct synthesis and adsorption from solution. Finally, a chapter is devoted to a preliminary study on the development of cements based on some of the functionalized phosphates obtained.