10 resultados para Visual stimuli
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.
Resumo:
Assessment of brain connectivity among different brain areas during cognitive or motor tasks is a crucial problem in neuroscience today. Aim of this research study is to use neural mass models to assess the effect of various connectivity patterns in cortical EEG power spectral density (PSD), and investigate the possibility to derive connectivity circuits from EEG data. To this end, two different models have been built. In the first model an individual region of interest (ROI) has been built as the parallel arrangement of three populations, each one exhibiting a unimodal spectrum, at low, medium or high frequency. Connectivity among ROIs includes three parameters, which specify the strength of connection in the different frequency bands. Subsequent studies demonstrated that a single population can exhibit many different simultaneous rhythms, provided that some of these come from external sources (for instance, from remote regions). For this reason in the second model an individual ROI is simulated only with a single population. Both models have been validated by comparing the simulated power spectral density with that computed in some cortical regions during cognitive and motor tasks. Another research study is focused on multisensory integration of tactile and visual stimuli in the representation of the near space around the body (peripersonal space). This work describes an original neural network to simulate representation of the peripersonal space around the hands, in basal conditions and after training with a tool used to reach the far space. The model is composed of three areas for each hand, two unimodal areas (visual and tactile) connected to a third bimodal area (visual-tactile), which is activated only when a stimulus falls within the peripersonal space. Results show that the peripersonal space, which includes just a small visual space around the hand in normal conditions, becomes elongated in the direction of the tool after training, thanks to a reinforcement of synapses.
Resumo:
This thesis was aimed at verifying the role of the superior colliculus (SC) in human spatial orienting. To do so, subjects performed two experimental tasks that have been shown to involve SC’s activation in animals, that is a multisensory integration task (Experiment 1 and 2) and a visual target selection task (Experiment 3). To investigate this topic in humans, we took advantage of neurophysiological finding revealing that retinal S-cones do not send projections to the collicular and magnocellular pathway. In the Experiment 1, subjects performed a simple reaction-time task in which they were required to respond as quickly as possible to any sensory stimulus (visual, auditory or bimodal audio-visual). The visual stimulus could be an S-cone stimulus (invisible to the collicular and magnocellular pathway) or a long wavelength stimulus (visible to the SC). Results showed that when using S-cone stimuli, RTs distribution was simply explained by probability summation, indicating that the redundant auditory and visual channels are independent. Conversely, with red long-wavelength stimuli, visible to the SC, the RTs distribution was related to nonlinear neural summation, which constitutes evidence of integration of different sensory information. We also demonstrate that when AV stimuli were presented at fixation, so that the spatial orienting component of the task was reduced, neural summation was possible regardless of stimulus color. Together, these findings provide support for a pivotal role of the SC in mediating multisensory spatial integration in humans, when behavior involves spatial orienting responses. Since previous studies have shown an anatomical asymmetry of fibres projecting to the SC from the hemiretinas, the Experiment 2 was aimed at investigating temporo-nasal asymmetry in multisensory integration. To do so, subjects performed monocularly the same task shown in the Experiment 1. When spatially coincident audio-visual stimuli were visible to the SC (i.e. red stimuli), the RTE depended on a neural coactivation mechanism, suggesting an integration of multisensory information. When using stimuli invisible to the SC (i.e. purple stimuli), the RTE depended only on a simple statistical facilitation effect, in which the two sensory stimuli were processed by independent channels. Finally, we demonstrate that the multisensory integration effect was stronger for stimuli presented to the temporal hemifield than to the nasal hemifield. Taken together, these findings suggested that multisensory stimulation can be differentially effective depending on specific stimulus parameters. The Experiment 3 was aimed at verifying the role of the SC in target selection by using a color-oddity search task, comprising stimuli either visible or invisible to the collicular and magnocellular pathways. Subjects were required to make a saccade toward a target that could be presented alone or with three distractors of another color (either S-cone or long-wavelength). When using S-cone distractors, invisible to the SC, localization errors were similar to those observed in the distractor-free condition. Conversely, with long-wavelength distractors, visible to the SC, saccadic localization error and variability were significantly greater than in either the distractor-free condition or the S-cone distractors condition. Our results clearly indicate that the SC plays a direct role in visual target selection in humans. Overall, our results indicate that the SC plays an important role in mediating spatial orienting responses both when required covert (Experiments 1 and 2) and overt orienting (Experiment 3).
Resumo:
Human brain is provided with a flexible audio-visual system, which interprets and guides responses to external events according to spatial alignment, temporal synchronization and effectiveness of unimodal signals. The aim of the present thesis was to explore the possibility that such a system might represent the neural correlate of sensory compensation after a damage to one sensory pathway. To this purpose, three experimental studies have been conducted, which addressed the immediate, short-term and long-term effects of audio-visual integration on patients with Visual Field Defect (VFD). Experiment 1 investigated whether the integration of stimuli from different modalities (cross-modal) and from the same modality (within-modal) have a different, immediate effect on localization behaviour. Patients had to localize modality-specific stimuli (visual or auditory), cross-modal stimulus pairs (visual-auditory) and within-modal stimulus pairs (visual-visual). Results showed that cross-modal stimuli evoked a greater improvement than within modal stimuli, consistent with a Bayesian explanation. Moreover, even when visual processing was impaired, cross-modal stimuli improved performance in an optimal fashion. These findings support the hypothesis that the improvement derived from multisensory integration is not attributable to simple target redundancy, and prove that optimal integration of cross-modal signals occurs in processing stage which are not consciously accessible. Experiment 2 examined the possibility to induce a short term improvement of localization performance without an explicit knowledge of visual stimulus. Patients with VFD and patients with neglect had to localize weak sounds before and after a brief exposure to a passive cross-modal stimulation, which comprised spatially disparate or spatially coincident audio-visual stimuli. After exposure to spatially disparate stimuli in the affected field, only patients with neglect exhibited a shifts of auditory localization toward the visual attractor (the so called Ventriloquism After-Effect). In contrast, after adaptation to spatially coincident stimuli, both neglect and hemianopic patients exhibited a significant improvement of auditory localization, proving the occurrence of After Effect for multisensory enhancement. These results suggest the presence of two distinct recalibration mechanisms, each mediated by a different neural route: a geniculo-striate circuit and a colliculus-extrastriate circuit respectively. Finally, Experiment 3 verified whether a systematic audio-visual stimulation could exert a long-lasting effect on patients’ oculomotor behaviour. Eye movements responses during a visual search task and a reading task were studied before and after visual (control) or audio-visual (experimental) training, in a group of twelve patients with VFD and twelve controls subjects. Results showed that prior to treatment, patients’ performance was significantly different from that of controls in relation to fixations and saccade parameters; after audiovisual training, all patients reported an improvement in ocular exploration characterized by fewer fixations and refixations, quicker and larger saccades, and reduced scanpath length. Similarly, reading parameters were significantly affected by the training, with respect to specific impairments observed in left and right hemisphere–damaged patients. The present findings provide evidence that a systematic audio-visual stimulation may encourage a more organized pattern of visual exploration with long lasting effects. In conclusion, results from these studies clearly demonstrate that the beneficial effects of audio-visual integration can be retained in absence of explicit processing of visual stimulus. Surprisingly, an improvement of spatial orienting can be obtained not only when a on-line response is required, but also after either a brief or a long adaptation to audio-visual stimulus pairs, so suggesting the maintenance of mechanisms subserving cross-modal perceptual learning after a damage to geniculo-striate pathway. The colliculus-extrastriate pathway, which is spared in patients with VFD, seems to play a pivotal role in this sensory compensation.
Resumo:
Prehension in an act of coordinated reaching and grasping. The reaching component is concerned with bringing the hand to object to be grasped (transport phase); the grasping component refers to the shaping of the hand according to the object features (grasping phase) (Jeannerod, 1981). Reaching and grasping involve different muscles, proximal and distal muscles respectively, and are controlled by different parietofrontal circuit (Jeannerod et al., 1995): a medial circuit, involving area of superior parietal lobule and dorsal premotor area 6 (PMd) (dorsomedial visual stream), is mainly concerned with reaching; a lateral circuit, involving the inferior parietal lobule and ventral premotor area 6 (PMv) (dorsolateral visual stream), with grasping. Area V6A is located in the caudalmost part of the superior parietal lobule, so it belongs to the dorsomedial visual stream; it contains neurons sensitive to visual stimuli (Galletti et al. 1993, 1996, 1999) as well as cells sensitive to the direction of gaze (Galletti et al. 1995) and cells showing saccade-related activity (Nakamura et al. 1999; Kutz et al. 2003). Area V6A contains also arm-reaching neurons likely involved in the control of the direction of the arm during movements towards objects in the peripersonal space (Galletti et al. 1997; Fattori et al. 2001). The present results confirm this finding and demonstrate that during the reach-to-grasp the V6A neurons are also modulated by the orientation of the wrist. Experiments were approved by the Bioethical Committee of the University of Bologna and were performed in accordance with National laws on care and use of laboratory animals and with the European Communities Council Directive of 24th November 1986 (86/609/EEC), recently revised by the Council of Europe guidelines (Appendix A of Convention ETS 123). Experiments were performed in two awake Macaca fascicularis. Each monkey was trained to sit in a primate chair with the head restrained to perform reaching and grasping arm movements in complete darkness while gazing a small fixation point. The object to be grasped was a handle that could have different orientation. We recorded neural activity from 163 neurons of the anterior parietal sulcus; 116/163 (71%) neurons were modulated by the reach-to-grasp task during the execution of the forward movements toward the target (epoch MOV), 111/163 (68%) during the pulling of the handle (epoch HOLD) and 102/163 during the execution of backward movements (epoch M2) (t_test, p ≤ 0.05). About the 45% of the tested cells turned out to be sensitive to the orientation of the handle (one way ANOVA, p ≤ 0.05). To study how the distal components of the movement, such as the hand preshaping during the reaching of the handle, could influence the neuronal discharge, we compared the neuronal activity during the reaching movements towards the same spatial location in reach-to-point and reach-to-grasp tasks. Both tasks required proximal arm movements; only the reach-to-grasp task required distal movements to orient the wrist and to shape the hand to grasp the handle. The 56% of V6A cells showed significant differences in the neural discharge (one way ANOVA, p ≤ 0.05) between the reach-to-point and the reach-to-grasp tasks during MOV, 54% during HOLD and 52% during M2. These data show that reaching and grasping are processed by the same population of neurons, providing evidence that the coordination of reaching and grasping takes place much earlier than previously thought, i.e., in the parieto-occipital cortex. The data here reported are in agreement with results of lesions to the medial posterior parietal cortex in both monkeys and humans, and with recent imaging data in humans, all of them indicating a functional coupling in the control of reaching and grasping by the medial parietofrontal circuit.
Resumo:
The main aim of this thesis is strongly interdisciplinary: it involves and presumes a knowledge on Neurophysiology, to understand the mechanisms that undergo the studied phenomena, a knowledge and experience on Electronics, necessary during the hardware experimental set-up to acquire neuronal data, on Informatics and programming to write the code necessary to control the behaviours of the subjects during experiments and the visual presentation of stimuli. At last, neuronal and statistical models should be well known to help in interpreting data. The project started with an accurate bibliographic research: until now the mechanism of perception of heading (or direction of motion) are still poorly known. The main interest is to understand how the integration of visual information relative to our motion with eye position information happens. To investigate the cortical response to visual stimuli in motion and the integration with eye position, we decided to study an animal model, using Optic Flow expansion and contraction as visual stimuli. In the first chapter of the thesis, the basic aims of the research project are presented, together with the reasons why it’s interesting and important to study perception of motion. Moreover, this chapter describes the methods my research group thought to be more adequate to contribute to scientific community and underlines my personal contribute to the project. The second chapter presents an overview on useful knowledge to follow the main part of the thesis: it starts with a brief introduction on central nervous system, on cortical functions, then it presents more deeply associations areas, which are the main target of our study. Furthermore, it tries to explain why studies on animal models are necessary to understand mechanism at a cellular level, that could not be addressed on any other way. In the second part of the chapter, basics on electrophysiology and cellular communication are presented, together with traditional neuronal data analysis methods. The third chapter is intended to be a helpful resource for future works in the laboratory: it presents the hardware used for experimental sessions, how to control animal behaviour during the experiments by means of C routines and a software, and how to present visual stimuli on a screen. The forth chapter is the main core of the research project and the thesis. In the methods, experimental paradigms, visual stimuli and data analysis are presented. In the results, cellular response of area PEc to visual stimuli in motion combined with different eye positions are shown. In brief, this study led to the identification of different cellular behaviour in relation to focus of expansion (the direction of motion given by the optic flow pattern) and eye position. The originality and importance of the results are pointed out in the conclusions: this is the first study aimed to investigate perception of motion in this particular cortical area. In the last paragraph, a neuronal network model is presented: the aim is simulating cellular pre-saccadic and post-saccadic response of neuron in area PEc, during eye movement tasks. The same data presented in chapter four, are further analysed in chapter fifth. The analysis started from the observation of the neuronal responses during 1s time period in which the visual stimulation was the same. It was clear that cells activities showed oscillations in time, that had been neglected by the previous analysis based on mean firing frequency. Results distinguished two cellular behaviour by their response characteristics: some neurons showed oscillations that changed depending on eye and optic flow position, while others kept the same oscillations characteristics independent of the stimulus. The last chapter discusses the results of the research project, comments the originality and interdisciplinary of the study and proposes some future developments.
Resumo:
The present thesis addresses several experimental questions regarding the nature of the processes underlying the larger centro-parietal Late Positive Potential (LPP) measured during the viewing of emotional(both pleasant and unpleasant) compared to neutral pictures. During a passive viewing condition, this modulatory difference is significantly reduced with picture repetition, but it does not completely habituate even after a massive repetition of the same picture exemplar. In order to investigate the obligatory nature of the affective modulation of the LPP, in Study 1 we introduced a competing task during repetitive exposure of affective pictures. Picture repetition occurred in a passive viewing context or during a categorization task, in which pictures depicting any mean of transportation were presented as targets, and repeated pictures (affectively engaging images) served as distractor stimuli. Results indicated that the impact of repetition on the LPP affective modulation was very similar between the passive and the task contexts, indicating that the affective processing of visual stimuli reflects an obligatory process that occurs despite participants were engaged in a categorization task. In study 2 we assessed whether the decrease of the LPP affective modulation persists over time, by presenting in day 2 the same set of pictures that were massively repeated in day 1. Results indicated that the reduction of the emotional modulation of the LPP to repeated pictures persisted even after 1-day interval, suggesting a contribution of long-term memory processes on the affective habituation of the LPP. Taken together, the data provide new information regarding the processes underlying the affective modulation of the late positive potential.
Resumo:
The study of optic flow on postural control may explain how self-motion perception contributes to postural stability in young males and females and how such function changes in the old falls risk population. Study I: The aim was to examine the optic flow effect on postural control in young people (n=24), using stabilometry and surface-electromyography. Subjects viewed expansion and contraction optic flow stimuli which were presented full field, in the foveral or in the peripheral visual field. Results showed that optic flow stimulation causes an asymmetry in postural balance and a different lateralization of postural control in men and women. Gender differences evoked by optic flow were found both in the muscle activity and in the prevalent direction of oscillation. The COP spatial variability was reduced during the view of peripheral stimuli which evoked a clustered prevalent direction of oscillation, while foveal and random stimuli induced non-distributed directions. Study II was aimed at investigating the age-related mechanisms of postural stability during the view of optic flow stimuli in young (n=17) and old (n=19) people, using stabilometry and kinematic. Results showed that old people showed a greater effort to maintain posture during the view of optic flow stimuli than the young. Elderly seems to use the head stabilization on trunk strategy. Visual stimuli evoke an excitatory input on postural muscles, but the stimulus structure produces different postural effects. Peripheral optic flow stabilizes postural sway, while random and foveal stimuli provoke larger sway variability similar to those evoked in baseline. Postural control uses different mechanisms within each leg to produce the appropriate postural response to interact with extrapersonal environment. Ageing reduce the effortlessness to stabilize posture during optic flow, suggesting a neuronal processing decline associated with difficulty integrating multi-sensory information of self-motion perception and increasing risk of falls.
Resumo:
Salient stimuli, like sudden changes in the environment or emotional stimuli, generate a priority signal that captures attention even if they are task-irrelevant. However, to achieve goal-driven behavior, we need to ignore them and to avoid being distracted. It is generally agreed that top-down factors can help us to filter out distractors. A fundamental question is how and at which stage of processing the rejection of distractors is achieved. Two circumstances under which the allocation of attention to distractors is supposed to be prevented are represented by the case in which distractors occur at an unattended location (as determined by the deployment of endogenous spatial attention) and when the amount of visual working memory resources is reduced by an ongoing task. The present thesis is focused on the impact of these factors on three sources of distraction, namely auditory and visual onsets (Experiments 1 and 2, respectively) and pleasant scenes (Experiment 3). In the first two studies we recorded neural correlates of distractor processing (i.e., Event-Related Potentials), whereas in the last study we used interference effects on behavior (i.e., a slowing down of response times on a simultaneous task) to index distraction. Endogenous spatial attention reduced distraction by auditory stimuli and eliminated distraction by visual onsets. Differently, visual working memory load only affected the processing of visual onsets. Emotional interference persisted even when scenes occurred always at unattended locations and when visual working memory was loaded. Altogether, these findings indicate that the ability to detect the location of salient task-irrelevant sounds and identify the affective significance of natural scenes is preserved even when the amount of visual working memory resources is reduced by an ongoing task and when endogenous attention is elsewhere directed. However, these results also indicate that the processing of auditory and visual distractors is not entirely automatic.
Resumo:
Lesions to the primary geniculo-striate visual pathway cause blindness in the contralesional visual field. Nevertheless, previous studies have suggested that patients with visual field defects may still be able to implicitly process the affective valence of unseen emotional stimuli (affective blindsight) through alternative visual pathways bypassing the striate cortex. These alternative pathways may also allow exploitation of multisensory (audio-visual) integration mechanisms, such that auditory stimulation can enhance visual detection of stimuli which would otherwise be undetected when presented alone (crossmodal blindsight). The present dissertation investigated implicit emotional processing and multisensory integration when conscious visual processing is prevented by real or virtual lesions to the geniculo-striate pathway, in order to further clarify both the nature of these residual processes and the functional aspects of the underlying neural pathways. The present experimental evidence demonstrates that alternative subcortical visual pathways allow implicit processing of the emotional content of facial expressions in the absence of cortical processing. However, this residual ability is limited to fearful expressions. This finding suggests the existence of a subcortical system specialised in detecting danger signals based on coarse visual cues, therefore allowing the early recruitment of flight-or-fight behavioural responses even before conscious and detailed recognition of potential threats can take place. Moreover, the present dissertation extends the knowledge about crossmodal blindsight phenomena by showing that, unlike with visual detection, sound cannot crossmodally enhance visual orientation discrimination in the absence of functional striate cortex. This finding demonstrates, on the one hand, that the striate cortex plays a causative role in crossmodally enhancing visual orientation sensitivity and, on the other hand, that subcortical visual pathways bypassing the striate cortex, despite affording audio-visual integration processes leading to the improvement of simple visual abilities such as detection, cannot mediate multisensory enhancement of more complex visual functions, such as orientation discrimination.