2 resultados para Visceral Leishmanises
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Fabry disease (FD) is an X‐linked inherited, lysosomal storage disorder characterized by a deficient activity of the enzyme α-Galactosidase A (α-Gal A). This deficiency causes an accumulation of globotriaosylceramide 3 (Gb3), in nearly all organs. Gastrointestinal (GI) symptoms are among the earliest and most frequent symptoms of FD. It has been hypothesized that Gb3 accumulation is the leading cause of these, but their pathophysiology is complex and still poorly understood. Here, we aim at understanding the molecular mechanisms underpinning the GI symptoms of FD. For this purpose, we used the α‐Gal A (-/0) male mouse, a murine model of FD, to characterize morphological and molecular features of the colon tract. Our results show that α‐Gal A (-/0) mice display a thickening of the muscular layer due to a hypertrophic state of myenteric plexus ganglia, caused by an accumulation of Gb3 in neurons. Also, α-Gal A (-/0) mice present a decreased density of mucosal nerve fibres. Furthermore, α-Gal A (-/0) mice presented visceral hyperalgesia, by showing greater visceromotor response (VMR) values and obtaining higher abdominal withdrawal reflex (AWR) scores, following colorectal distension (CRD). Subsequently, the immunoreactivity of the pain-related ion channels TRPV1, TRPV4, TRPA1 and TRPM8 was detected at level of myenteric and submucosal plexus ganglia of both the genotypes. Further studies are required to assess differences of expression between α-Gal A (-/0) and control mice. Finally, we optimized the protocols to obtain three types of primary cultures from mouse intestine to be tested electrophysiologically: a mixed culture containing neurons and glia, an enriched culture of neurons, and one of glia. In summary, we revealed alterations that are likely to be part of the pathophysiological causes of FD GI symptoms. Therefore, together with further studies, this work could help identify new therapeutic targets for the treatment of visceral pain in FD.
Resumo:
Leishmaniasis is a complex parasitic disease caused by intracellular protozoans of the genus Leishmania mainly transmitted by the bite of sand flies. In Italy, leishmaniasis is caused by Leishmania infantum, responsible for the human visceral and canine leishmaniases (HVL and CanL, respectively). Within Emilia-Romagna region, Italy, recent molecular studies indicated that L. infantum strains circulating in dogs and humans are different. This suggests that an animal reservoir other than dog should be evaluated in the epidemiology of HVL in Emilia-Romagna. Therefore, the main aim of this PhD project was to investigate the role of wild and peridomestic mammals as potential animal reservoirs of L. infantum in the regional zones where HVL foci are still active, also evaluating the possible role of arthropod vectors other than phlebotomine sandflies as vectors of Leishmania spp. in the sylvatic cycle of the protozoa. Overall, 206 specimens of different animal species (roe deer, rats, mice, badgers, hares, polecats, foxes, beech martens, bank voles, hedgehogs, and shrews), collected in Emilia-Romagna were screened for Leishmania with a real-time PCR, revealing a prevalence of 33% for roe deer (first report in this species). Positivity was also found in brown rats (10.6%), black rats (13.1%), mice (10%), badgers (25%), hedgehogs (80%) and bank voles (11%). To distinguish the two strains of L. infantum circulating in Emilia-Romagna, a nested PCR protocol optimized for animal tissues was developed, demonstrating that over 90% of L. infantum infections in roe deer were due to the strain isolated from humans and suggesting their possible role as reservoirs in the study area. Furthermore, the presence of Leishmania kDNA was detected in unfed larvae, nymphs and males of questing Ixodes ricinus ticks collected in regional parks of Emilia-Romagna suggesting their possible role in the transmission of L. infantum in a sylvatic or rural cycle.