5 resultados para Vinyl azides
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Dichloroindium hydride revealed to be a valid alternative to tributyltin hydride for radical reduction of organic (alkyl, aryl, acyl, solfonyl) azides. The new approach entails mild reaction conditions and provides high yields of the corresponding amines and amides, also showing high degrees of selectivity. The system dichloroindium hydride / azides can be utilised in fivemembered ring closures of g-azidonitriles, as a new source of aminyl radicals for the attractive synthesis of interesting amidine compounds in the absence of both toxic reagents and tedious purification procedures. Allylindium dichloride seems a good substitute for dichloroindium hydride for generation of indium centred radicals under photolytic conditions, since it allows allylation of electrophilic azides (e.g. phenylsulfonyl azide) and halogen or ester δ-substituted azides, the latter through a 1,5-H transfer rearrangement mechanism. Evidences of the radical nature of the reactions mechanism were provided by ESR spectroscopy, furthermore the same technique, allowed to discover that the reaction of azides with indium trichloride and other group XIII Lewis acids, in particular gallium trichloride, gives rise to strongly coloured, persistent paramagnetic species, whose structure is consistent with the radical cation of the head-to-tail dimer of the aniline corresponding to the starting azide.
Resumo:
In this PhD-thesis, two methodologies for enantioselective intramolecular ring closing reaction on indole cores are presented. The first methodology represents a highly stereoselective alkylation of the indole N1-nitrogen, leading to 3,4-dihydro-pyrazinoindol-1-ones – a structural class which is known for its activity on the CNS and therefore of high pharmacological interest concerning related diseases. In this approach, N-benzyl cinchona-alkaloids were used for the efficient catalysis of intramolecular aza-Michael reactions. Furthermore, computational studies in collaboration with the research group Prof. Andrea Bottoni (Department of Chemistry “G. Ciamician”, Bologna) were accomplished in order to get insight into the key interactions between catalyst and substrate, leading to enantiomeric excesses up to 91%. The results of the calculations on a model system are in accordance with the experimental results and demonstrate the high sensibility of the system towards structural modifications. The second project deals with a metal catalyzed, intramolecular Friedel-Crafts (FC)-reaction on indolyl substrates, carrying a side chain which on its behalf is furnished with an allylic alcohol unit. Allylic alcohols are part of the structural class of “π-activated alcohols” – alcohols, which are more easily activated due to the proximity to a π-unit (allyl-, propargyl-, benzyl-). The enantioselective intramolecular cyclization event is catalyzed efficiently by employment of a chiral Au(I)-catalyst, leading to 1-vinyl- or 4-vinyl-tetrahydrocarbazoles (THCs) under the formation of water as byproduct. This striking and novel process concerning the direct activation of alcohols in catalytic FC-reactions was subsequently extended to similar precursors, leading to functionalized tetrahydro-β-carbolines. These two methodologies represent highly efficient approaches towards the synthesis of scaffolds, which are of enormous pharmaceutical interest and amplify the spectra of enantioselective catalytic functionalisations of indoles.
Resumo:
Polymeric adhesives have been used for many applications like suture and embolization, instead of classic surgical methods or as for dental uses. In this work both subjects have been investigated and the results separated in two parts. In the first, new dentinal adhesives with different polymerizable groups (methacrylic or vinyl-ethereal) were synthesized. A low sensitivity to hydrolysis and equal or enhanced properties, compared to existing commercial products, were considered essentials. Moreover, these monomers need to polymerize by radical photopolymerization and functional groups of different characteristics were tested. All these products were characterized by microtensile bond strength test to determine the bonding strength between the adhesive and tooth. Concerning embolization, cyanoacrylates are nowadays the most-used adhesives in surgery. Thus, they must respond to several requirements. For instance, polymerization time and adhesive strength need to be low, to avoid diffusion of the products in the body and adhesion to the catheter. In order to overcome these problems we developed new cyanoacrylates, which practically instantly polymerize upon contact with blood but do not demonstrate strong adhesion to the catheter, thank to the presence of fluorine atoms, linked to the ester chain. The synthesis of these products was carried out in several steps, such as the depolymerization of the corresponding oligomers at high temperature in acid conditions. Two types of adhesion strengths were determined. Bonding strength between human veins and a microcatheter was determined in vitro by using organic materials as the most realistic model. Another test, on two layers of skin, was conducted to verify the possible use of these new cyanoacrylates as a glue for sutures. As a conclusion, we were able to demonstrate that some of the prepared monomers posses adhesive strength and polymerization time lower than the commercial product Glubran2.
Resumo:
In first part we have developed a simple regiocontrolled protocol of 1,3-DC to get ring fused pyrazole derivatives. These pyrazole derivatives were synthesized using 1,3-DC between nitrile imine and various dipolarophiles such as alkynes, cyclic α,β-ketones, lactones, thiocatones and lactums. The reactions were found to be highly regiospecific. In second part we have discussed about helicene, its properties, synthesis and applications as asymmetric catalyst.Due to inherent chirality, herein we have made an attempt to synthesize the helicene-thiourea based catalyst for asymmetric catalysis. The synthesis involved formation of two key intermediates viz, bromo-phenanthrene 5 and a vinyl-naphthalene 10. The coupling of these two intermediates leads to formation of hexahelicene.
Resumo:
In this work we presented several aspects regarding the possibility to use readily available propargylic alcohols as acyclic precursors to develop new stereoselective [Au(I)]-catalyzed cascade reactions for the synthesis of highly complex indole architectures. The use of indole-based propargylic alcohols of type 1 in a stereoselective [Au(I)]-catalyzed hydroindolynation/immiun trapping reactive sequence opened access to a new class of tetracyclic indolines, dihydropyranylindolines A and furoindolines B. An enantioselective protocol was futher explored in order to synthesize this molecules with high yields and ee. The suitability of propargylic alcohols in [Au(I)]-catalyzed cascade reactions was deeply investigated by developing cascade reactions in which was possible not only to synthesize the indole core but also to achieve a second functionalization. Aniline based propargylic alcohols 2 were found to be modular acyclic precursors for the synthesis of [1,2-a] azepinoindoles C. In describing this reactivity we additionally reported experimental evidences for an unprecedented NHCAu(I)-vinyl specie which in a chemoselective fashion, led to the annulation step, synthesizing the N1-C2-connected seven membered ring. The chemical flexibility of propargylic alcohols was further explored by changing the nature of the chemical surrounding with different preinstalled N-alkyl moiety in propargylic alcohols of type 3. Particularly, in the case of a primary alcohol, [Au(I)] catalysis was found to be prominent in the synthesis of a new class of [4,3-a]-oxazinoindoles D while the use of an allylic alcohol led to the first example of [Au(I)] catalyzed synthesis and enantioselective functionalization of this class of molecules (D*). With this work we established propargylic alcohols as excellent acyclic precursor to developed new [Au(I)]-catalyzed cascade reaction and providing new catalytic synthetic tools for the stereoselective synthesis of complex indole/indoline architectures.