2 resultados para Viability study

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Among all cancer types leukemia represents the leading cause of cancer death in man younger than 40 years. Single-target drug therapy has generally been highly ineffective in treating complex diseases such as cancer. A growing interest has been directed toward multi-target drugs able to hit multiple targets. In this context, plant products, based on their intrinsic complexity, could represent an interesting and promising approach. Aim of the research followed during my PhD was to indentify and study novel natural compounds for the treatment of acute leukemias. Two potential multi-target drugs were identified in Hemidesmus indicus and piperlongumine. Methodology/Principal Findings: A variety of cellular assays and flow cytometry were performed on different cell lines. We demonstrated that Hemidesmus modulates many components of intracellular signaling pathways involved in cell viability and proliferation and alters gene and protein expression, eventually leading to tumor cell death, mediated by a loss of mitochondrial transmembrane potential, raise of [Ca2+]i, inhibition of Mcl-1, increasing Bax/Bcl-2 ratio, and ROS formation. Moreover, we proved that the decoction causes differentiation of HL-60 and regulates angiogenesis of HUVECs in hypoxia and normoxia, by the inhibition of new vessel formation and the processes of migration/invasion. Clinically relevant observations are that its cytotoxic activity was also recorded in primary cells from acute myeloid leukemia (AML) patients. Moreover, both Hemidesmus and piperlongumine showed a selective action toward leukemic stem cell (LSC). Conclusions: Our results indicate the molecular basis of the anti-leukemic effects of Hemidesmus indicus and indentify the mitochondrial pathways, [Ca2+]i, cytodifferentiation and angiogenesis inhibition as crucial actors in its anticancer activity. The ability to selectively hit LSC showed by Hemidesmus and piperlongumine enriched the knowledge of their anti-leukemic activity. On these bases, we conclude that Hemidesmus and piperlongumine can represent a valuable strategy in the anticancer pharmacology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone remodelling is a fundamental mechanism for removing and replacing bone during adaptation of the skeleton to mechanical loads. Skeletal unloading leads to severe hypoxia (1%O2) in the bone microenvironment resulting in imbalanced bone remodelling that favours bone resorption. Hypoxia, in vivo, is a physiological condition for osteocytes, 5% O2 is more likely physiological for osteocytes than 20% O2, as osteocytes are embedded deep inside the mineralized bone matrix. Osteocytes are thought to be the mechanosensors of bone and have been shown to orchestrate bone formation and resorption. Oxygen-deprived osteocytes seem undergo apoptosis and actively stimulate osteoclasts. Hypoxia and oxidative stress increase 150-kDa oxygen-regulated protein (ORP 150) expression in different cell types. It is a novel endoplasmic-reticulum-associated chaperone induced by hypoxia/ischemia. It well known that ORP 150 plays an important role in the cellular adaptation to hypoxia, as anti-apoptotic factor, and seems to be involved in osteocytes differentiations. The aims of the present study are 1) to determine the cellular and molecular response of the osteocytes at two different conditions of oxygen deprivation, 1% and 5% of O2 compared to the atmospheric oxygen concentration at several time points. 2) To clarify the role of hypoxic osteocytes in bone homeostasis through the detection of releasing of soluble factors (RANKL, OPG, PGE2 and Sclerostin). 3) To detect the activation of osteoclast and osteoblast induced by condition media collected from hypoxic and normoxic osteocytes. The data obtained in this study shows that hypoxia compromises the viability of osteocytes and induces apoptosis. Unlike in other cells types, ORP 150 in MLO-Y4 does not seem to be regulated early during hypoxia. The release of soluble factors and the evaluation of osteoclast and osteoblast activation shows that osteocytes, grown under severe oxygen deprivation, play a role in the regulation of both bone resorption and bone formation.