3 resultados para Veno-vasculature
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Background New potential hazards in the use of ultrasound (US) are implied in new diagnostic applications of US, such as contrast enhanced US. Aim To assess the level of awareness and knowledge on safety issues of clinical use of US among physicians who are members of the Italian National Society for Ultrasound (SIUMB) Materials and methods A questionnaire including 11 multiple choice quiz was sent by e-mail to members of SIUMB, who preliminarly agreed to participate in this initiative. The answers were received anonimously and statistically analyzed. Results The number of returned valid questionnaires was 97 (8 were considered not valid for less than 10 answers filled). Mean age of the responders was 44 years old, and the average time the physician has been performing ultrasound examinations was 13 years. The principal workplace (70%) was a public Hospital. Physicians seemed to know the general definitions of principal safety-parameters, but few of them knew the definition of specific indexes. There was a general knowledge about the safe use of ultrasound in obstetrics, but there was a poor knowledge of biological effects of US: only about 37% answered correctly to questions about damage of vasculature of lung by high Mechanical Index US investigation and about the increase of temperature under the probe, according to the thermal indexes. Conclusion In conclusion the present findings indicate that greater efforts of National Ultrasound Societies are warranted in disseminating knowledge about the bio-effects of diagnostic ultrasound modalities among their members to prevent possible hazards.
Resumo:
Astrocytes are the most numerous glial cell type in the mammalian brain and permeate the entire CNS interacting with neurons, vasculature, and other glial cells. Astrocytes display intracellular calcium signals that encode information about local synaptic function, distributed network activity, and high-level cognitive functions. Several studies have investigated the calcium dynamics of astrocytes in sensory areas and have shown that these cells can encode sensory stimuli. Nevertheless, only recently the neuro-scientific community has focused its attention on the role and functions of astrocytes in associative areas such as the hippocampus. In our first study, we used the information theory formalism to show that astrocytes in the CA1 area of the hippocampus recorded with 2-photon fluorescence microscopy during spatial navigation encode spatial information that is complementary and synergistic to information encoded by nearby "place cell" neurons. In our second study, we investigated various computational aspects of applying the information theory formalism to astrocytic calcium data. For this reason, we generated realistic simulations of calcium signals in astrocytes to determine optimal hyperparameters and procedures of information measures and applied them to real astrocytic calcium imaging data. Calcium signals of astrocytes are characterized by complex spatiotemporal dynamics occurring in subcellular parcels of the astrocytic domain which makes studying these cells in 2-photon calcium imaging recordings difficult. However, current analytical tools which identify the astrocytic subcellular regions are time consuming and extensively rely on user-defined parameters. Here, we present Rapid Astrocytic calcium Spatio-Temporal Analysis (RASTA), a novel machine learning algorithm for spatiotemporal semantic segmentation of 2-photon calcium imaging recordings of astrocytes which operates without human intervention. We found that RASTA provided fast and accurate identification of astrocytic cell somata, processes, and cellular domains, extracting calcium signals from identified regions of interest across individual cells and populations of hundreds of astrocytes recorded in awake mice.
Resumo:
Introduction The maternal vasculature undergoes significant adaptations during pregnancy to meet the increased metabolic demands of the developing fetus. These adaptations include increased cardiac output and blood volume, as well as reduced systemic vascular resistance. In Hypertensive disorders of pregnancy (HDP) there is an impaired cardiovascular adaptation to pregnancy with effects extending beyond pregnancy. In the present study we aimed to characterize long-term cardiovascular status of women who suffered from HDP. Methods Fifty-eight women who attended at least one post-partum visit and a follow-up visit after at least 5 years from delivery were enrolled in the study. Exclusion criteria included multiple pregnancy, fetal genetic or congenital abnormalities, maternal history of organ transplantation, or chronic renal failure (eGFR≤45ml/min/1.73m2). In the follow-up visit participants underwent a complete cardiovascular assessment including echocardiography and multiparametric vascular function assessment. Results and Discussion Two major cardiovascular events, one stroke and one myocardial infarction, occurred both in women with index-pregnancy complicated by preeclampsia (PE). While not statistically significant, women with HDP-non-PE and PE displayed a trend towards an increased risk of developing composite cardiovascular outcome, and women with PE tended to experience it sooner. Nearly half of the women with a history of HDP, whether PE or HDP-non-PE, developed chronic hypertension. Some women also developed hyperuricemia, chronic kidney disease (CKD), and type 2 diabetes at follow- up, most of them had a previous history of PE. Structural and functional cardiac changes were observed in a few cases, especially among women with PE, and vascular dysfunction was more common in women with a history of HDP compared to those with normotensive pregnancies. Results of the present study adds on literature on long-term cardiovascular impact of HDP and further emphasize the importance of a timely follow-up of women who suffered from HDP and particularly PE.