3 resultados para Vehicle-Carried Warning Signs.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The present doctoral thesis discusses the ways to improve the performance of driving simulator, provide objective measures for the road safety evaluation methodology based on driver’s behavior and response and investigates the drivers' adaptation to the driving assistant systems. The activities are divided into two macro areas; the driving simulation studies and on-road experiments. During the driving simulation experimentation, the classical motion cueing algorithm with logarithmic scale was implemented in the 2DOF motion cueing simulator and the motion cues were found desirable by the participants. In addition, it found out that motion stimuli could change the behaviour of the drivers in terms of depth/distance perception. During the on-road experimentations, The driver gaze behaviour was investigated to find the objective measures on the visibility of the road signs and reaction time of the drivers. The sensor infusion and the vehicle monitoring instruments were found useful for an objective assessment of the pavement condition and the drivers’ performance. In the last chapter of the thesis, the safety assessment during the use of level 1 automated driving “ACC” is discussed with the simulator and on-road experiment. The drivers’ visual behaviour was investigated in both studies with innovative classification method to find the epochs of the distraction of the drivers. The behavioural adaptation to ACC showed that drivers may divert their attention away from the driving task to engage in secondary, non-driving-related tasks.
Resumo:
In this thesis, a thorough investigation on acoustic noise control systems for realistic automotive scenarios is presented. The thesis is organized in two parts dealing with the main topics treated: Active Noise Control (ANC) systems and Virtual Microphone Technique (VMT), respectively. The technology of ANC allows to increase the driver's/passenger's comfort and safety exploiting the principle of mitigating the disturbing acoustic noise by the superposition of a secondary sound wave of equal amplitude but opposite phase. Performance analyses of both FeedForwrd (FF) and FeedBack (FB) ANC systems, in experimental scenarios, are presented. Since, environmental vibration noises within a car cabin are time-varying, most of the ANC solutions are adaptive. However, in this work, an effective fixed FB ANC system is proposed. Various ANC schemes are considered and compared with each other. In order to find the best possible ANC configuration which optimizes the performance in terms of disturbing noise attenuation, a thorough research of \gls{KPI}, system parameters and experimental setups design, is carried out. In the second part of this thesis, VMT, based on the estimation of specific acoustic channels, is investigated with the aim of generating a quiet acoustic zone around a confined area, e.g., the driver's ears. Performance analysis and comparison of various estimation approaches is presented. Several measurement campaigns were performed in order to acquire a sufficient duration and number of microphone signals in a significant variety of driving scenarios and employed cars. To do this, different experimental setups were designed and their performance compared. Design guidelines are given to obtain good trade-off between accuracy performance and equipment costs. Finally, a preliminary analysis with an innovative approach based on Neural Networks (NNs) to improve the current state of the art in microphone virtualization is proposed.
Resumo:
The evolution of modern and increasingly sensitive image sensors, the increasingly compact design of the cameras, and the recent emergence of low-cost cameras allowed the Underwater Photogrammetry to become an infallible and irreplaceable technique used to estimate the structure of the seabed with high accuracy. Within this context, the main topic of this work is the Underwater Photogrammetry from a geomatic point of view and all the issues associated with its implementation, in particular with the support of Unmanned Underwater Vehicles. Questions such as: how does the technique work, what is needed to deal with a proper survey, what tools are available to apply this technique, and how to resolve uncertainties in measurement will be the subject of this thesis. The study conducted can be divided into two major parts: one devoted to several ad-hoc surveys and tests, thus a practical part, another supported by the bibliographical research. However the main contributions are related to the experimental section, in which two practical case studies are carried out in order to improve the quality of the underwater survey of some calibration platforms. The results obtained from these two experiments showed that, the refractive effects due to water and underwater housing can be compensated by the distortion coefficients in the camera model, but if the aim is to achieve high accuracy then a model that takes into account the configuration of the underwater housing, based on ray tracing, must also be coupled. The major contributions that this work brought are: an overview of the practical issues when performing surveys exploiting an UUV prototype, a method to reach a reliable accuracy in the 3D reconstructions without the use of an underwater local geodetic network, a guide for who addresses underwater photogrammetry topics for the first time, and the use of open-source environments.