4 resultados para Vehicle Interior Controls and Handles.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This PhD thesis has been proposed to validate and then apply innovative analytical methodologies for the determination of compounds with harmful impact on human health, such as biogenic amines and ochratoxin A in wines. Therefore, the influence of production technology (pH, amino acids precursor and use of different malolactic starters) on biogenic amines content in wines was evaluated. An HPLC method for simultaneous determination of amino acids and amines with precolumnderivatization with 9-Fluorenyl-methoxycarbonyl chloride (FMOC-Cl) and UV detection was developed. Initially, the influence of pH, time of derivatization, gradient profile were studied. In order to improve the separation of amino acids and amines and reduce the time of analysis, it was decided to study the influence of different flows and the use of different columns in the chromatographic method. Firstly, a C18 Luna column was used and later two monolithic columns Chromolith in series. It appeared to be suitable for an easy, precise and accurate determination of a relatively large number of amino acids and amines in wines. This method was then applied on different wines produced in the Emilia Romagna region. The investigation permitted to discriminate between red and white wines. Amino acids content is related to the winemaking process. Biogenic amines content in these wines does not represent a possible toxicological problem for human health. The results of the study of influence of technologies and wine composition demonstrated that pH of wines and amino acids content are the most important factors. Particularly wines with pH > 3,5 show higher concentration of biogenic amines than wines with lower pH. The enrichment of wines by nutrients also influences the content of some biogenic amines that are higher in wines added with amino acids precursors. In this study, amino acids and biogenic amines are not statistically affected by strain of lactic acid bacteria inoculated as a starter for malolactic fermentation. An evaluation of different clean-up (SPE-MycoSep; IACs and LLE) and determination methods (HPLC and ELISA) of ochratoxin A was carried out. The results obtained proved that the SPE clean-up are reliable at the same level while the LLE procedures shows lowest recovery. The ELISA method gave a lower determination and a low reproducibility than HPLC method.
Resumo:
Recent statistics have demonstrated that two of the most important causes of failures of the UAVs (Uninhabited Aerial Vehicle) missions are related to the low level of decisional autonomy of vehicles and to the man machine interface. Therefore, a relevant issue is to design a display/controls architecture which allows the efficient interaction between the operator and the remote vehicle and to develop a level of automation which allows the vehicle the decision about change in mission. The research presented in this paper focuses on a modular man-machine interface simulator for the UAV control, which simulates UAV missions, developed to experiment solution to this problem. The main components of the simulator are an advanced interface and a block defined automation, which comprehend an algorithm that implements the level of automation of the system. The simulator has been designed and developed following a user-centred design approach in order to take into account the operator’s needs in the communication with the vehicle. The level of automation has been developed following the supervisory control theory which says that the human became a supervisor who sends high level commands, such as part of mission, target, constraints, in then-rule, while the vehicle receives, comprehends and translates such commands into detailed action such as routes or action on the control system. In order to allow the vehicle to calculate and recalculate the safe and efficient route, in term of distance, time and fuel a 3D planning algorithm has been developed. It is based on considering UASs representative of real world systems as objects moving in a virtual environment (terrain, obstacles, and no fly zones) which replicates the airspace. Original obstacle avoidance strategies have been conceived in order to generate mission planes which are consistent with flight rules and with the vehicle performance constraints. The interface is based on a touch screen, used to send high level commands to the vehicle, and a 3D Virtual Display which provides a stereoscopic and augmented visualization of the complex scenario in which the vehicle operates. Furthermore, it is provided with an audio feedback message generator. Simulation tests have been conducted with pilot trainers to evaluate the reliability of the algorithm and the effectiveness and efficiency of the interface in supporting the operator in the supervision of an UAV mission. Results have revealed that the planning algorithm calculate very efficient routes in few seconds, an adequate level of workload is required to command the vehicle and that the 3D based interface provides the operator with a good sense of presence and enhances his awareness of the mission scenario and of the vehicle under his control.
Resumo:
Solid organ transplantation (SOT) is considered the treatment of choice for many end-stage organ diseases. Thus far, short term results are excellent, with patient survival rates greater than 90% one year post-surgery, but there are several problems with the long term acceptance and use of immunosuppressive drugs. Hematopoietic Stem Cells Transplantation (HSCT) concerns the infusion of haematopoietic stem cells to re-establish acquired and congenital disorders of the hematopoietic system. The main side effect is the Graft versus Host Disease (GvHD) where donor T cells can cause pathology involving the damage of host tissues. Patients undergoing acute or chronic GvHD receive immunosuppressive regimen that is responsible for several side effects. The use of immunosuppressive drugs in the setting of SOT and GvHD has markedly reduced the incidence of acute rejection and the tissue damage in GvHD however, the numerous adverse side effects observed boost the development of alternative strategies to improve the long-term outcome. To this effect, the use of CD4+CD25+FOXP3+ regulatory T cells (Treg) as a cellular therapy is an attractive approach for autoimmunity disease, GvHD and limiting immune responses to allograft after transplantation. Treg have a pivotal role in maintaining peripheral immunological tolerance, by preventing autoimmunity and chronic inflammation. Results of my thesis provide the characterization and cell processing of Tregs from healthy controls and patients in waiting list for liver transplantation, followed by the development of an efficient expansion-protocol and the investigation of the impact of the main immunosuppressive drugs on viability, proliferative capacity and function of expanded cells after expansion. The conclusion is that ex vivo expansion is necessary to infuse a high Treg dose and although many other factors in vivo can contribute to the success of Treg therapy, the infusion of Tregs during the administration of the highest dose of immunosuppressants should be carefully considered.
Resumo:
A new control scheme has been presented in this thesis. Based on the NonLinear Geometric Approach, the proposed Active Control System represents a new way to see the reconfigurable controllers for aerospace applications. The presence of the Diagnosis module (providing the estimation of generic signals which, based on the case, can be faults, disturbances or system parameters), mean feature of the depicted Active Control System, is a characteristic shared by three well known control systems: the Active Fault Tolerant Controls, the Indirect Adaptive Controls and the Active Disturbance Rejection Controls. The standard NonLinear Geometric Approach (NLGA) has been accurately investigated and than improved to extend its applicability to more complex models. The standard NLGA procedure has been modified to take account of feasible and estimable sets of unknown signals. Furthermore the application of the Singular Perturbations approximation has led to the solution of Detection and Isolation problems in scenarios too complex to be solved by the standard NLGA. Also the estimation process has been improved, where multiple redundant measuremtent are available, by the introduction of a new algorithm, here called "Least Squares - Sliding Mode". It guarantees optimality, in the sense of the least squares, and finite estimation time, in the sense of the sliding mode. The Active Control System concept has been formalized in two controller: a nonlinear backstepping controller and a nonlinear composite controller. Particularly interesting is the integration, in the controller design, of the estimations coming from the Diagnosis module. Stability proofs are provided for both the control schemes. Finally, different applications in aerospace have been provided to show the applicability and the effectiveness of the proposed NLGA-based Active Control System.