3 resultados para Vector space,

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Social interactions have been the focus of social science research for a century, but their study has recently been revolutionized by novel data sources and by methods from computer science, network science, and complex systems science. The study of social interactions is crucial for understanding complex societal behaviours. Social interactions are naturally represented as networks, which have emerged as a unifying mathematical language to understand structural and dynamical aspects of socio-technical systems. Networks are, however, highly dimensional objects, especially when considering the scales of real-world systems and the need to model the temporal dimension. Hence the study of empirical data from social systems is challenging both from a conceptual and a computational standpoint. A possible approach to tackling such a challenge is to use dimensionality reduction techniques that represent network entities in a low-dimensional feature space, preserving some desired properties of the original data. Low-dimensional vector space representations, also known as network embeddings, have been extensively studied, also as a way to feed network data to machine learning algorithms. Network embeddings were initially developed for static networks and then extended to incorporate temporal network data. We focus on dimensionality reduction techniques for time-resolved social interaction data modelled as temporal networks. We introduce a novel embedding technique that models the temporal and structural similarities of events rather than nodes. Using empirical data on social interactions, we show that this representation captures information relevant for the study of dynamical processes unfolding over the network, such as epidemic spreading. We then turn to another large-scale dataset on social interactions: a popular Web-based crowdfunding platform. We show that tensor-based representations of the data and dimensionality reduction techniques such as tensor factorization allow us to uncover the structural and temporal aspects of the system and to relate them to geographic and temporal activity patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multi-phase electrical drives are potential candidates for the employment in innovative electric vehicle powertrains, in response to the request for high efficiency and reliability of this type of application. In addition to the multi-phase technology, in the last decades also, multilevel technology has been developed. These two technologies are somewhat complementary since both allow increasing the power rating of the system without increasing the current and voltage ratings of the single power switches of the inverter. In this thesis, some different topics concerning the inverter, the motor and the fault diagnosis of an electric vehicle powertrain are addressed. In particular, the attention is focused on multi-phase and multilevel technologies and their potential advantages with respect to traditional technologies. First of all, the mathematical models of two multi-phase machines, a five-phase induction machine and an asymmetrical six-phase permanent magnet synchronous machines are developed using the Vector Space Decomposition approach. Then, a new modulation technique for multi-phase multilevel T-type inverters, which solves the voltage balancing problem of the DC-link capacitors, ensuring flexible management of the capacitor voltages, is developed. The technique is based on the proper selection of the zero-sequence component of the modulating signals. Subsequently, a diagnostic technique for detecting the state of health of the rotor magnets in a six-phase permanent magnet synchronous machine is established. The technique is based on analysing the electromotive force induced in the stator windings by the rotor magnets. Furthermore, an innovative algorithm able to extend the linear modulation region for five-phase inverters, taking advantage of the multiple degrees of freedom available in multi-phase systems is presented. Finally, the mathematical model of an eighteen-phase squirrel cage induction motor is defined. This activity aims to develop a motor drive able to change the number of poles of the machine during the machine operation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of ancient, undeciphered scripts presents unique challenges, that depend both on the nature of the problem and on the peculiarities of each writing system. In this thesis, I present two computational approaches that are tailored to two different tasks and writing systems. The first of these methods is aimed at the decipherment of the Linear A afraction signs, in order to discover their numerical values. This is achieved with a combination of constraint programming, ad-hoc metrics and paleographic considerations. The second main contribution of this thesis regards the creation of an unsupervised deep learning model which uses drawings of signs from ancient writing system to learn to distinguish different graphemes in the vector space. This system, which is based on techniques used in the field of computer vision, is adapted to the study of ancient writing systems by incorporating information about sequences in the model, mirroring what is often done in natural language processing. In order to develop this model, the Cypriot Greek Syllabary is used as a target, since this is a deciphered writing system. Finally, this unsupervised model is adapted to the undeciphered Cypro-Minoan and it is used to answer open questions about this script. In particular, by reconstructing multiple allographs that are not agreed upon by paleographers, it supports the idea that Cypro-Minoan is a single script and not a collection of three script like it was proposed in the literature. These results on two different tasks shows that computational methods can be applied to undeciphered scripts, despite the relatively low amount of available data, paving the way for further advancement in paleography using these methods.