4 resultados para Vascular graft
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Critical lower limb ischemia is a severe disease. A common approach is infrainguinal bypass. Synthetic vascular prosthesis, are good conduits in high-flow low-resistance conditions but have difficulty in their performance as small diameter vessel grafts. A new approach is the use of native decellularized vascular tissues. Cell-free vessels are expected to have improved biocompatibility when compared to synthetic and are optimal natural 3D matrix templates for driving stem cell growth and tissue assembly in vivo. Decellularization of tissues represent a promising field for regenerative medicine, with the aim to develop a methodology to obtain small-diameter allografts to be used as a natural scaffold suited for in vivo cell growth and pseudo-tissue assembly, eliminating failure caused from immune response activation. Material and methods. Umbilical cord-derived mesenchymal cells isolated from human umbilical cord tissue were expanded in advanced DMEM. Immunofluorescence and molecular characterization revealed a stem cell profile. A non-enzymatic protocol, that associate hypotonic shock and low-concentration ionic detergent, was used to decellularize vessel segments. Cells were seeded cell-free scaffolds using a compound of fibrin and thrombin and incubated in DMEM, after 4 days of static culture they were placed for 2 weeks in a flow-bioreactor, mimicking the cardiovascular pulsatile flow. After dynamic culture, samples were processed for histological, biochemical and ultrastructural analysis. Discussion. Histology showed that the dynamic culture cells initiate to penetrate the extracellular matrix scaffold and to produce components of the ECM, as collagen fibres. Sirius Red staining showed layers of immature collagen type III and ultrastructural analysis revealed 30 nm thick collagen fibres, presumably corresponding to the immature collagen. These data confirm the ability of cord-derived cells to adhere and penetrate a natural decellularized tissue and to start to assembly into new tissue. This achievement makes natural 3D matrix templates prospectively valuable candidates for clinical bypass procedures
Resumo:
The arterial wall contains MSCs with mesengenic and angiogenic abilities. These multipotent precursors have been isolated from variously-sized human adult segments, belying the notion that vessel wall is a relatively quiescent tissue. Recently, our group identified in normal human arteries a vasculogenic niche and subsequently isolated and characterized resident MSCs (VW-MSCs) with angiogenic ability and multilineage potential. To prove that VW-MSCs are involved in normal and pathological vascular remodeling, we used a long-term organ culture system; this method was of critical importance to follow spontaneous 3-D vascular remodeling without any influence of blood cells. Next we tried to identify and localize in situ the VW-MSCs and to understand their role in the vascular remodeling in failed arterial homografts. Subsequently, we isolated this cell population and tested in vitro their multilineage differentiation potential through immunohistochemical, immunofluorescence, RT-PCR and ultrastructural analysis. From 25-30cm2 of each vascular wall homograft sample, we isolated a cell population with MSCs properties; these cells expressed MSC lineage molecules (CD90, CD44, CD105, CD29, CD73), stemness (Notch-1, Oct-4, Sca-1, Stro-1) and pericyte markers (NG2) whilst were negative for hematopoietic and endothelial markers (CD34, CD133, CD45, KDR, CD146, CD31 and vWF). MSCs derived from failed homografts (H-MSCs) exhibited adipogenic, osteogenic and chondrogenic potential but scarce propensity to angiogenic and leiomyogenic differentiation. The present study demonstrates that failed homografts contain MSCs with morphological, phenotypic and functional MSCs properties; H-MSCs are long-lived in culture, highly proliferating and endowed with prompt ability to differentiate into adipocytes, osteocytes and chondrocytes; compared with VW-MSCs from normal arteries, H-MSCs show a failure in angiogenic and leiomyogenic differentiation. A switch in MSCs plasticity could be the basis of pathological remodeling and contribute to aneurysmal failure of arterial homografts. The study of VW-MSCs in a pathological setting indicate that additional mechanisms are involved in vascular diseases; their knowledge will be useful for opening new therapeutic options in cardiovascular diseases.