2 resultados para Van-Der-Waals

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pulsed jet Fourier transform microwave spectroscopy have been applied to several molecular complexes involving H2O, freons, methane, carboxylic acids, and rare gas. The obtained results showcase the suitability of this technique for studying the intermolecular interactions. The rotational spectra of three water adducts of halogenated organic molecules, i.e. chlorotrifluoroethylene, isoflurane and alfa,alfa,alfa,-trifluoroanisole, have been investigated. It has been found that, the halogenation of the partner molecules definitely changes the way in which water will link to the partner molecule. Quadrupole hyperfine structures and/or the tunneling splittings have been observed in the rotational spectra of difluoromethane-dichloromethane, chlorotrifluorometane-fluoromethane, difluoromethane-formaldehyde and trifluoromethane-benzene. These features have been useful to describe their intermolecular interactions (weak hydrogen bonds or halogen bonds), and to size the potential energy surfaces of their internal motions. The rotational spectrum of pyridine-methane pointed out that methane prefers to locate above the ring and link to pyridine through a C-H•••π weak hydrogen bond, rather than the C-H•••n interaction. This behavior, typical of complexes of pyridine with rare gases, suggests classifying CH4, in relation to its ability to form molecular complexes with aromatic molecules, as a pseudo rare gas. The conformational equilibria of three bi-molecules of carboxylic acids, acrylic acid-trifluoroacetic acid, difluoroacetic acid-formic acid and acrylic acid-fluoroacetic acid have been studied. The increase of the hydrogen bond length upon H→D isotopic substitution (Ubbelohde effect) has been deduced from the elongation of the carboxylic carbons C•••C distance. The van der Waals complex tetrahydrofuran-krypton shows that the systematic doubling of the rotational lines has been attributed to the residual pseudo-rotation of tetrahydrofuran in the complex, based on the values of the Coriolis coupling constants, and on the type (mu_b) of the interstate transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular self-assembly takes advantage of supramolecular non-covalent interactions (ionic, hydrophobic, van der Waals, hydrogen and coordination bonds) for the construction of organized and tunable systems. In this field, lipophilic guanosines can represent powerful building blocks thanks to their aggregation proprieties in organic solvents, which can be controlled by addition or removal of cations. For example, potassium ion can template the formation of piled G-quartets structures, while in its absence ribbon-like G aggregates are generated in solution. In this thesis we explored the possibility of using guanosines as scaffolds to direct the construction of ordered and self-assembled architectures, one of the main goals of bottom-up approach in nanotechnology. In Chapter III we will describe Langmuir-Blodgett films obtained from guanosines and other lipophilic nucleosides, revealing the “special” behavior of guanine in comparison with the other nucleobases. In Chapter IV we will report the synthesis of several thiophene-functionalized guanosines and the studies towards their possible use in organic electronics: the pre-programmed organization of terthiophene residues in ribbon aggregates could allow charge conduction through π-π stacked oligothiophene functionalities. The construction and the behavior of some simple electronic nanodevices based on these organized thiopehene-guanosine hybrids has been explored.