6 resultados para VINIFERA

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In organic and biodynamic vineyards, canopy management practices should be carefully and timely modulated, particularly in a context of climate change, for successfully achieving balanced plants, ventilated and exposed berries, elevated grape and wine quality. In 2013 and 2014, characterized by contrasting climatic conditions, the implications of post-veraison (late) or pea-size trimming, post-veraison or pre-harvest late defoliations and shoot-positioning (post-veraison) were assessed against long-shoots non treated controls, under field conditions on organically-cultivated cv. Sangiovese. The key agronomic and enological relevance of late trimming and defoliations clearly emerged in both seasons. Berry skin phenolics (e.g. anthocyanins, flavonols) increased markedly, without changes in technological parameters. In case of early trimming, such positive effects were observed only in 2013. Maintaining long shoots for shading decreased anthocyanins, flavonols and total phenolics concentrations and promoted the production of compact bunches. Experimental data strongly designated late trimming, a practice proved to contain yield and bunch compactness, as a valuable alternative to cluster thinning. Late trimming, defoliations and shoot positioning reduced the severity of Botrytis cluster rot. The highest levels of berry skins phenolic compounds in late trimmed and defoliated plants could have contributed control the severity of this pathogen. The enological benefits induced by late trimming and defoliations and shoot positioning emerged in both young and aged wines. For the first time, cell cultures from cv. Sangiovese berry tissues were obtained and enabled to investigate, in controlled conditions, the relations between mechanisms regulating secondary metabolism in grapevine cells and changes induced by environmental and agronomic factors. The Doctoral Dissertation strongly highlights the need to consider, for a proper interpretation of the multiple modifications induced by canopy management strategies, physiological mechanisms other than the canonic source-sink relationships, in particular their impact on the vine hormonal status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyphenols, including flavonoids and stilbenes, are an essential part of human diet and constitute one of the most abundant and ubiquitous group of plant secondary metabolites. The level of these compounds is inducible by stress or fungal attack, so attempts are being made to identify likely biotic and abiotic elicitors and to better understand the underlying mechanism. Resveratrol (3,5,4’-trihydroxystilbene), which belongs to the stilbene family, is a naturally occurring polyphenol, found in several fruits, vegetables and beverages including red wine. It is one of the most important plant polyphenols with proved benefic activity on animal health. In the last two decades, the potential protective effects of resveratrol against cardiovascular and neurodegenerative diseases, as well as the chemopreventive properties against cancer, have been largely investigated. The most important source of polyphenols and in particular resveratrol for human diet is grape (Vitis vinifera). Since stilbenes and flavonoids play a very important role in plant defence responses and enviromental interactions, and their effects on human health seem promising, the aim of the research of this Thesis was to study at different levels the activation and the regulation of their biosynthetic pathways after chitosan treatment. Moreover, the polyphenol production in grape cells and the optimisation of cultural conditions bioreactor scale-up, were also investigated. Cell suspensions were obtained from cv. Barbera (Vitis vinifera L.) petioles and were treated with a biotic elicitor, chitosan (50 μg/mL, dissolved in acetic acid) to promote phenylpropanoid metabolism. Chitosan is a D-glucosamine polymer from fungi cell wall and therefore mimes fungal pathogen attack. Liquid cultures have been monitored for 15 days, measuring cell number, cell viability, pH and grams of fresh weight. The endogenous and released amounts of 7 stilbenes (trans and cis isomers of resveratrol, piceid and resveratroloside, and piceatannol), gallic acid, 6 hydroxycinnamic acids (trans-cinnamic, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acids), 5 catechines (catechin, epicatechin, epigallocatechin-gallate (EGCG), epigallocatechin and epicatechin-gallate) and other 5 flavonoids (chalcon, naringenin, kaempferol, quercetin and rutin) in cells and cultural medium, were measured by HPLC-DAD analysis and total anthocyanins were quantified by spectrophotometric analysis. Chitosan was effective in stimulating trans-resveratrol endogenous accumulation with a sharp peak at day 4 (exceeding acetic acid and water controls by 36% and 63%, respectively), while it did not influence the production of the cis-isomer. Compared to both water and acetic acid controls, chitosan decreased the release of both trans- and cis-resveratrol respect to controls. No effect was shown on the accumulation of single resveratrol mono-glucoside isomers, but considering their total amount, normalized for the relative water control, it was possible to evidence an increase in both accumulation and release of those compounds, in chitosan-treated cells, throughout the culture period and particularly during the second week. Many of the analysed flavonoids and hydroxycinnamic acids were not present or detectable in trace amounts. Catechin, epicatechin and epigallocatechin-gallate (EGCG) were detectable both inside the cells and in the culture media, but chitosan did not affect their amounts. On the contrary, total anthocyanins have been stimulated by chitosan and their level, from day 4 to 14, was about 2-fold higher than in both controls, confirming macroscopic observations that treated suspensions showed an intense brown-red color, from day 3 onwards. These elicitation results suggest that chitosan selectively up-regulates specific biosynthetic pathways, without modifying the general accumulation pattern of other flavonoids. Proteins have been extracted from cells at day 4 of culture (corresponding to the production peak of trans-resveratrol) and separated by bidimensional electrophoresis. The 73 proteins that showed a consistently changed amount between untreated, chitosan and acetic acid (chitosan solvent) treated cells, have been identified by mass spectrometry. Chitosan induced an increase in stilbene synthase (STS, the resveratrol biosynthetic enzyme), chalcone-flavanone isomerase (CHI, that switches the pathway from chalcones to flavones and anthocyanins), pathogenesis-related proteins 10 (PRs10, a large family of defence proteins), and a decrease in many proteins belonging to primary metabolisms. A train of six distinct spots of STS encoded by the same gene and increased by chitosan, was detected on the 2-D gels, and related to the different phosphorylation degree of STS spots. Northern blot analyses have been performed on RNA extracted from cells treated with chitosan and relative controls, using probes for STS, PAL (phenylalanine ammonia lyase, the first enzyme of the biosynthetic pathway), CHS (chalcone synthase, that shares with STS the same precursors), CHI and PR-10. The up-regulation of PAL, CHS and CHI transcript expression levels correlated with the accumulation of anthocyanins. The strong increase of different molecular weight PR-10 mRNAs, correlated with the 11 PR-10 protein spots identified in proteomic analyses. The sudden decrease in trans-resveratrol endogenous accumulation after day 4 of culture, could be simply explained by the diminished resveratrol biosynthetic activity due to the lower amount of biosynthetic enzymes. This might be indirectly demonstrated by northern blot expression analyses, that showed lower levels of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) mRNAs starting from day 4. Other possible explanations could be a resveratrol oxidation process and/or the formation of other different mono-, di-glucosides and resveratrol oligomers such as viniferins. Immunolocalisation experiments performed on grape protoplasts and the subsequent analyses by confocal microscope, showed that STS, and therefore the resveratrol synthetic site, is mostly associated to intracellular membranes close to the cytosolic side of plasma membrane and in a smaller amount is localized in the cytosol. STS seemed not to be present inside vacuole and nucleus. There were no differences in the STS intracellular localisation between the different treatments. Since it was shown that stilbenes are largely released in the culture medium and that STS is a soluble protein, a possible interaction of STS with a plasma membrane transporter responsible for the extrusion of stilbenes in the culture medium, might be hypothesized. Proteomic analyses performed on subcellular fractions identified in the microsomial fraction 5 proteins taking part in channel complexes or associated with channels, that significantly changed their amount after chitosan treatment. In soluble and membrane fractions respectively 3 and 4 STS and 6 and 3 PR-10 have been identified. Proteomic results obtained from subcellular fractions substantially confirmed previous result obtained from total cell protein extracts and added more information about protein localisation and co-localisation. The interesting results obtained on Barbera cell cultures with the aim to increase polyphenol (especially stilbenes) production, have encouraged scale up tests in 1 litre bioreactors. The first trial fermentation was performed in parallel with a normal time-course in 20 mL flasks, showing that the scale-up (bigger volume and different conditions) process influenced in a very relevant way stilbenes production. In order to optimise culture parameters such as medium sucrose amount, fermentation length and inoculum cell concentration, few other fermentations were performed. Chitosan treatments were also performed. The modification of each parameter brought relevant variations in stilbenes and catechins levels, so that the production of a certain compound (or class of compounds) could be hypothetically promoted by modulating one or more culture parameters. For example the catechin yield could be improved by increasing sucrose content and the time of fermentation. The best results in stilbene yield were obtained in a 800 mL fermentation inoculated with 10.8 grams of cells and supplemented with chitosan. The culture was fed with MS medium added with 30 g/L sucrose, 25 μg/mL rifampicin and 50 μg/mL of chitosan, and was maintained at 24°C, stirred by marine impeller at 100 rpm and supplied of air at 0.16 L/min rate. Resveratroloside was the stilbene present in the larger amount, 3-5 times more than resveratrol. Because resveratrol glucosides are similarly active and more stable than free resveratrol, their production using a bioreactor could be a great advantage in an hypothetical industrial process. In my bioreactor tests, stilbenes were mainly released in the culture medium (60-80% of the total) and this fact could be another advantage for industrial applications, because it allows recovering the products directly from the culture medium without stopping the fermentation and/or killing the cells. In my best cultural conditions, it was possible to obtain 3.95 mg/L of stilbenes at day 4 (maximum resveratrol accumulation) and 5.13 mg/L at day 14 (maximum resveratroloside production). In conclusion, chitosan effect in inducing Vitis vinifera defense mechanisms can be related to its ability to increase the intracellular content of a large spectrum of antioxidants, and in particular of resveratrol, its derivates and anthocyanins. Its effect can be observed at transcriptional, proteomic (variation of soluble and membrane protein amounts) and metabolic (polyphenols production) level. The chitosan ability to elicit specific plant matabolisms can be useful to produce large quantities of antioxidant compounds from cell culture in bioreactor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective was to analyse population structure and to determine genetic diversity of Erysiphe necator (syn. Uncinula necator) populations obtained from some vineyards located in the South-East Po valley (Italy). Powdery mildew is one of the most important fungal diseases of grapes (Vitis vinifera L.) throughout the world. The causal agent is the haploid, heterothallic ascomycete E. necator. It is an obligate biotrophic fungus and it can be found only on green organs of plants belonging to the family Vitaceae. For this pathogen, two sympatric populations (groups A and B) have been described in Europe and Australia. The two genetic groups differ at multiple genetic loci and previous studies reported a lack of interfertility among isolates of the two groups. There are now several well documented examples of plant pathogen species, such as Leptosphaeria maculans, Gaeumannomyces graminis var. tritici, Botrytis cinerea and Erysiphe syringae, which are indeed composed of genetically differentiated clades, that have led to the description of new groups or even new species. Several studies have suggested that genetic E. necator group A and B correlated with ecological features of the pathogen; some researchers proposed that group A isolates over-winter as resting mycelium within dormant buds, and in spring originate infected shoots, known as Flag shoots, while group B isolates would survive as ascospores in overwintering cleistothecia. However, the association between genetic groups and mode of over-wintering has been challenged by recent studies reporting that flag-shoot may be originated indifferently by group A or group B isolate. Previous studies observed a strong association between the levels of disease severity at the end of the growing season and the initial compositions of E. necator populations in commercial vineyards. The frequencies of E. necator genetic groups vary considerably among vineyards, and the two groups may coexist in the same vineyard. This finding suggests that we need more information on the genetics and epidemiology of E. necator for optimize the crop management In this study we monitored E. necator populations in different vineyards in Emilia – Romagna region (Italy), where the pathogen overwinters both as flagshoots and as cleistothecia. During the grape growing season, symptomatic leaves were sampled early in the growing season and both leaves and berries later during the epidemic growth of the disease. From each sample, single-conidial isolate was obtained. Each isolates was grown on V. vinifera leaf cv. Primitivo and after harvesting the mycelium, the DNA was purified and used as template for PCR amplification with SCAR primers (Sequences Characterised Amplified Region ), -tubulin, IGS sequences and Microsatellite markers (SSR). Amplified DNA from b-tubulin and IGS loci was digested with AciI and XhoI restriction enzymes, respectively, to show single-nucleotide polymorphisms specific for the two genetic groups. The results obtained indicated that SCAR primers are not useful to study the epidemiology. of E. necator conversely the b-tubulin IGS sequences and SSR. Summarize the results obtained with b-tubulin, IGS sequences, in treated vineyards we have found individuals of group B along all grape growing season, whereas in the untreated vineyard individuals of the two genetic groups A and B coexisted throughout the season, with no significant change of their frequency. DNA amplified from ascospores of single cleistothecia showed the presence of markers diagnostic for either groups A and B and were seldom observed also the coexistence of both groups within a claistothecium. These results indicate that individuals of the two groups mated in nature and were able to produced ascospores. With SSR we showed the possibility of recombination between A and B groups in field isolates. During winter, cleistothecia were collected repeatedly in the same vineyards sampling leaves fallen on ground, exfoliating bark from trunks, and from soil. From each substrate, was assess the percentage of cleistothecia containing viable ascospores. Our results confirmed that cleisthotecia contained viable ascospores, therefore they have the potential to be an additional and important source of primary inoculum in Emilia-Romagna vineyards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grape berry is considered a non climacteric fruit, but there are some evidences that ethylene plays a role in the control of berry ripening. This PhD thesis aimed to give insights in the role of ethylene and ethylene-related genes in the regulation of grape berry ripening. During this study a small increase in ethylene concentration one week before véraison has been measured in Vitis vinifera L. ‘Pinot Noir’ grapes confirming previous findings in ‘Cabernet Sauvignon’. In addition, ethylene-related genes have been identified in the grapevine genome sequence. Similarly to other species, biosynthesis and ethylene receptor genes are present in grapevine as multi-gene families and their expression appeared tissue or developmental specific. All the other elements of the ethylene signal transduction cascade were also identified in the grape genome. Among them, there were ethylene response factors (ERF) which modulate the transcription of many effector genes in response to ethylene. In this study seven grapevine ERFs have been characterized and they showed tissue and berry development specific expression profiles. Two sequences, VvERF045 and VvERF063, seemed likely involved in berry ripening control due to their expression profiles and their sequence annotation. VvERF045 was induced before véraison and was specific of the ripe berry, by sequence similarity it was likely a transcription activator. VvERF063 displayed high sequence similarity to repressors of transcription and its expression, very high in green berries, was lowest at véraison and during ripening. To functionally characterize VvERF045 and VvERF063, a stable transformation strategy was chosen. Both sequences were cloned in vectors for over-expression and silencing and transferred in grape by Agrobacterium-mediated or biolistic-mediated gene transfer. In vitro, transgenic VvERF045 over-expressing plants displayed an epinastic phenotype whose extent was correlated to the transgene expression level. Four pathogen stress response genes were significantly induced in the transgenic plants, suggesting a putative function of VvERF045 in biotic stress defense during berry ripening. Further molecular analysis on the transgenic plants will help in identifying the actual VvERF045 target genes and together with the phenotypic characterization of the adult transgenic plants, will allow to extensively define the role of VvERF045 in berry ripening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are an important component of the innate immune system of the plants. Plant defensins are a large family of antimicrobial peptides with several interesting features, such as small dimension, high stability and broad spectrum of action. The discovery of new molecules and the study of their mechanism of action allow to consider them attractive for biotechnological applications. In this PhD thesis a defensin from Prunus persica (PpDFN1) and four novel DEFensin Like (DEFL) peptides from Vitis vinifera have been studied. In order to characterize the antimicrobial activity of these molecules, the recombinant mature peptides have been expressed in Escherichia coli and purified to homogeneity by chromatography techniques. PpDFN1 is able to inhibit the growth of B. cinerea, P. expansum and M. laxa with different intensity. The recombinant peptide is capable of membrane permeabilization as demonstrated by SYTOX green fluorescence uptake in treated mycelia. Its interaction with membranes containing sphingolipid species has been shown by artificial lipid monolayers. Furthermore, PpDFN1 displays stronger interaction with monolayers composed by lipids extracted from sensitive fungi with the highest interaction against P. expansum, the most sensitive fungi to PpDFN1 action. DEFL 13, a defensin from grapevine, resulted the strongest antibotrytis peptides. It is electrostatically attracted to the fungal membranes as shown by the antagonist effect of the cations and is able to membrane permeabilization in B. cinerea hyphae. DEFL 13 is internalized in fungal cells and leads to fungal death by activation of some signaling pathways as demonstrated by screening of a mutant collection of B. cinerea

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wine grape must deal with serious problems due to the unfavorable climatic conditions resulted from global warming. High temperatures result in oxidative damages to grape vines. The excessive elevated temperatures are critical for grapevine productivity and survival and contribute to degradation of grape and wine quality and yield. Elevated temperature can negatively affect anthocyanin accumulation in red grape. Particularly, cv. Sangiovese was identified to be very sensitive to such condition. The quantitative real-time PCR analysis showed that flavonoid biosynthetic genes were slightly repressed by high temperature. Also, the heat stress repressed the expression of the transcription factor “VvMYBA1” that activates the expression of UFGT. Moreover, high temperatures had repressing effects on the activity of the flavonoids biosynthetic enzymes “PAL” and “UFGT”.Anthocyanin accumulation in berry skin is due to the balance between its synthesis and oxidation. In grape cv. Sangiovese, the gene transcription and activity of peroxidases enzyme was elevated by heat stress as a defensive mechanism of ROS-scavenging. Among many isoforms of peroxidases genes, one gene (POD 1) was induced in Sangiovese under thermal stress condition. This gene was isolated and evaluated via the technique of genes transformation from grape to Petunia. Reduction in anthocyanins concentration and higher enzymatic activity of peroxidase was observed in POD 1 transformed Petunia after heat shock compared to untrasformed control. Moreover, in wine producing regions, it is inevitable for the grape growers to adopt some adaptive strategies to alleviate grape damages to abiotic stresses. Therefore, in this thesis, the technique of post veraison trimming was done to improve the coupling of phenolic and sugar ripening in Vitis vinifera L. cultivar Sangiovese. Trimming after veraison showed to be executable to slow down the rate of sugar accumulation in grape (to decrease the alcohol potential in wines) without evolution of the main berry flavonoids compounds.