7 resultados para VERSATILE REACTION SYSTEM
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this thesis we focussed on the characterization of the reaction center (RC) protein purified from the photosynthetic bacterium Rhodobacter sphaeroides. In particular, we discussed the effects of native and artificial environment on the light-induced electron transfer processes. The native environment consist of the inner antenna LH1 complex that copurifies with the RC forming the so called core complex, and the lipid phase tightly associated with it. In parallel, we analyzed the role of saccharidic glassy matrices on the interplay between electron transfer processes and internal protein dynamics. As a different artificial matrix, we incorporated the RC protein in a layer-by-layer structure with a twofold aim: to check the behaviour of the protein in such an unusual environment and to test the response of the system to herbicides. By examining the RC in its native environment, we found that the light-induced charge separated state P+QB - is markedly stabilized (by about 40 meV) in the core complex as compared to the RC-only system over a physiological pH range. We also verified that, as compared to the average composition of the membrane, the core complex copurifies with a tightly bound lipid complement of about 90 phospholipid molecules per RC, which is strongly enriched in cardiolipin. In parallel, a large ubiquinone pool was found in association with the core complex, giving rise to a quinone concentration about ten times larger than the average one in the membrane. Moreover, this quinone pool is fully functional, i.e. it is promptly available at the QB site during multiple turnover excitation of the RC. The latter two observations suggest important heterogeneities and anisotropies in the native membranes which can in principle account for the stabilization of the charge separated state in the core complex. The thermodynamic and kinetic parameters obtained in the RC-LH1 complex are very close to those measured in intact membranes, indicating that the electron transfer properties of the RC in vivo are essentially determined by its local environment. The studies performed by incorporating the RC into saccharidic matrices evidenced the relevance of solvent-protein interactions and dynamical coupling in determining the kinetics of electron transfer processes. The usual approach when studying the interplay between internal motions and protein function consists in freezing the degrees of freedom of the protein at cryogenic temperature. We proved that the “trehalose approach” offers distinct advantages with respect to this traditional methodology. We showed, in fact, that the RC conformational dynamics, coupled to specific electron transfer processes, can be modulated by varying the hydration level of the trehalose matrix at room temperature, thus allowing to disentangle solvent from temperature effects. The comparison between different saccharidic matrices has revealed that the structural and dynamical protein-matrix coupling depends strongly upon the sugar. The analyses performed in RCs embedded in polyelectrolyte multilayers (PEM) structures have shown that the electron transfer from QA - to QB, a conformationally gated process extremely sensitive to the RC environment, can be strongly modulated by the hydration level of the matrix, confirming analogous results obtained for this electron transfer reaction in sugar matrices. We found that PEM-RCs are a very stable system, particularly suitable to study the thermodynamics and kinetics of herbicide binding to the QB site. These features make PEM-RC structures quite promising in the development of herbicide biosensors. The studies discussed in the present thesis have shown that, although the effects on electron transfer induced by the native and artificial environments tested are markedly different, they can be described on the basis of a common kinetic model which takes into account the static conformational heterogeneity of the RC and the interconversion between conformational substates. Interestingly, the same distribution of rate constants (i.e. a Gamma distribution function) can describe charge recombination processes in solutions of purified RC, in RC-LH1 complexes, in wet and dry RC-PEM structures and in glassy saccharidic matrices over a wide range of hydration levels. In conclusion, the results obtained for RCs in different physico-chemical environments emphasize the relevance of the structure/dynamics solvent/protein coupling in determining the energetics and the kinetics of electron transfer processes in a membrane protein complex.
Resumo:
Dichloroindium hydride revealed to be a valid alternative to tributyltin hydride for radical reduction of organic (alkyl, aryl, acyl, solfonyl) azides. The new approach entails mild reaction conditions and provides high yields of the corresponding amines and amides, also showing high degrees of selectivity. The system dichloroindium hydride / azides can be utilised in fivemembered ring closures of g-azidonitriles, as a new source of aminyl radicals for the attractive synthesis of interesting amidine compounds in the absence of both toxic reagents and tedious purification procedures. Allylindium dichloride seems a good substitute for dichloroindium hydride for generation of indium centred radicals under photolytic conditions, since it allows allylation of electrophilic azides (e.g. phenylsulfonyl azide) and halogen or ester δ-substituted azides, the latter through a 1,5-H transfer rearrangement mechanism. Evidences of the radical nature of the reactions mechanism were provided by ESR spectroscopy, furthermore the same technique, allowed to discover that the reaction of azides with indium trichloride and other group XIII Lewis acids, in particular gallium trichloride, gives rise to strongly coloured, persistent paramagnetic species, whose structure is consistent with the radical cation of the head-to-tail dimer of the aniline corresponding to the starting azide.
Resumo:
Heterocyclic compounds represent almost two-thirds of all the known organic compounds: they are widely distributed in nature and play a key role in a huge number of biologically important molecules including some of the most significant for human beings. A powerful tool for the synthesis of such compounds is the hetero Diels-Alder reaction (HDA), that involve a [4+2] cycloaddition reaction between heterodienes and suitable dienophiles. Among heterodienes to be used in such six-membered heterocyclic construction strategy, 3-trialkylsilyloxy-2-aza-1,3-dienes (Fig 1) has been demonstrated particularly attractive. In this thesis work, HDA reactions between 2-azadienes and carbonylic and/or olefinic dienophiles, are described. Moreover, substitution of conventional heating by the corresponding dielectric heating as been explored in the frame of Microwave-Assisted-Organic-Synthesis (MAOS) which constitutes an up-to-grade research field of great interest both from an academic and industrial point of view. Reaction of the azadiene 1 (Fig 1) will be described using as dienophiles carbonyl compounds as aldehyde and ketones. The six-membered adducts thus obtained (Scheme 1) have been elaborated to biologically active compounds like 1,3-aminols which constitutes the scaffold for a wide range of drugs (Prozac®, Duloxetine, Venlafaxine) with large applications in the treatment of severe diseases of nervous central system (NCS). Scheme 1 The reaction provides the formation of three new stereogenic centres (C-2; C-5; C-6). The diastereoselective outcome of these reactions has been deeply investigated by the use of various combination of achiral and chiral azadienes and aliphatic, aromatic or heteroaromatic aldehydes. The same approach, basically, has been used in the synthesis of piperidin-2-one scaffold substituting the carbonyl dienophile with an electron poor olefin. Scheme 2 As a matter of fact, this scaffold is present in a very large number of natural substances and, more interesting, is a required scaffold for an huge variety of biologically active compounds. Activated olefins bearing one or two sulfone groups, were choose as dienophiles both for the intrinsic characteristic flexibility of the “sulfone group” which may be easily removed or elaborated to more complex decorations of the heterocyclic ring, and for the electron poor property of this dienophiles which makes the resulting HDA reaction of the type “normal electron demand”. Synthesis of natural compounds like racemic (±)-Anabasine (alkaloid of Tobacco’s leaves) and (R)- and (S)-Conhydrine (alkaloid of Conium Maculatum’s seeds and leaves) and its congeners, are described (Fig 2).
Resumo:
The ALICE experiment at the LHC has been designed to cope with the experimental conditions and observables of a Quark Gluon Plasma reaction. One of the main assets of the ALICE experiment with respect to the other LHC experiments is the particle identification. The large Time-Of-Flight (TOF) detector is the main particle identification detector of the ALICE experiment. The overall time resolution, better that 80 ps, allows the particle identification over a large momentum range (up to 2.5 GeV/c for pi/K and 4 GeV/c for K/p). The TOF makes use of the Multi-gap Resistive Plate Chamber (MRPC), a detector with high efficiency, fast response and intrinsic time resoltion better than 40 ps. The TOF detector embeds a highly-segmented trigger system that exploits the fast rise time and the relatively low noise of the MRPC strips, in order to identify several event topologies. This work aims to provide detailed description of the TOF trigger system. The results achieved in the 2009 cosmic-ray run at CERN are presented to show the performances and readiness of TOF trigger system. The proposed trigger configuration for the proton-proton and Pb-Pb beams are detailed as well with estimates of the efficiencies and purity samples.
Resumo:
The hierarchical organisation of biological systems plays a crucial role in the pattern formation of gene expression resulting from the morphogenetic processes, where autonomous internal dynamics of cells, as well as cell-to-cell interactions through membranes, are responsible for the emergent peculiar structures of the individual phenotype. Being able to reproduce the systems dynamics at different levels of such a hierarchy might be very useful for studying such a complex phenomenon of self-organisation. The idea is to model the phenomenon in terms of a large and dynamic network of compartments, where the interplay between inter-compartment and intra-compartment events determines the emergent behaviour resulting in the formation of spatial patterns. According to these premises the thesis proposes a review of the different approaches already developed in modelling developmental biology problems, as well as the main models and infrastructures available in literature for modelling biological systems, analysing their capabilities in tackling multi-compartment / multi-level models. The thesis then introduces a practical framework, MS-BioNET, for modelling and simulating these scenarios exploiting the potential of multi-level dynamics. This is based on (i) a computational model featuring networks of compartments and an enhanced model of chemical reaction addressing molecule transfer, (ii) a logic-oriented language to flexibly specify complex simulation scenarios, and (iii) a simulation engine based on the many-species/many-channels optimised version of Gillespie’s direct method. The thesis finally proposes the adoption of the agent-based model as an approach capable of capture multi-level dynamics. To overcome the problem of parameter tuning in the model, the simulators are supplied with a module for parameter optimisation. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. The problem is tackled with a metaheuristic algorithm. As an example of application of the MS-BioNET framework and of the agent-based model, a model of the first stages of Drosophila Melanogaster development is realised. The model goal is to generate the early spatial pattern of gap gene expression. The correctness of the models is shown comparing the simulation results with real data of gene expression with spatial and temporal resolution, acquired in free on-line sources.
Resumo:
We investigated at the molecular level protein/solvent interactions and their relevance in protein function through the use of amorphous matrices at room temperature. As a model protein, we used the bacterial photosynthetic reaction center (RC) of Rhodobacter sphaeroides, a pigment protein complex which catalyzes the light-induced charge separation initiating the conversion of solar into chemical energy. The thermal fluctuations of the RC and its dielectric conformational relaxation following photoexcitation have been probed by analyzing the recombination kinetics of the primary charge-separated (P+QA-) state, using time resolved optical and EPR spectroscopies. We have shown that the RC dynamics coupled to this electron transfer process can be progressively inhibited at room temperature by decreasing the water content of RC films or of RC-trehalose glassy matrices. Extensive dehydration of the amorphous matrices inhibits RC relaxation and interconversion among conformational substates to an extent comparable to that attained at cryogenic temperatures in water-glycerol samples. An isopiestic method has been developed to finely tune the hydration level of the system. We have combined FTIR spectral analysis of the combination and association bands of residual water with differential light-minus-dark FTIR and high-field EPR spectroscopy to gain information on thermodynamics of water sorption, and on structure/dynamics of the residual water molecules, of protein residues and of RC cofactors. The following main conclusions were reached: (i) the RC dynamics is slaved to that of the hydration shell; (ii) in dehydrated trehalose glasses inhibition of protein dynamics is most likely mediated by residual water molecules simultaneously bound to protein residues and sugar molecules at the protein-matrix interface; (iii) the local environment of cofactors is not involved in the conformational dynamics which stabilizes the P+QA-; (iv) this conformational relaxation appears to be rather delocalized over several aminoacidic residues as well as water molecules weakly hydrogen-bonded to the RC.
Fault detection, diagnosis and active fault tolerant control for a satellite attitude control system
Resumo:
Modern control systems are becoming more and more complex and control algorithms more and more sophisticated. Consequently, Fault Detection and Diagnosis (FDD) and Fault Tolerant Control (FTC) have gained central importance over the past decades, due to the increasing requirements of availability, cost efficiency, reliability and operating safety. This thesis deals with the FDD and FTC problems in a spacecraft Attitude Determination and Control System (ADCS). Firstly, the detailed nonlinear models of the spacecraft attitude dynamics and kinematics are described, along with the dynamic models of the actuators and main external disturbance sources. The considered ADCS is composed of an array of four redundant reaction wheels. A set of sensors provides satellite angular velocity, attitude and flywheel spin rate information. Then, general overviews of the Fault Detection and Isolation (FDI), Fault Estimation (FE) and Fault Tolerant Control (FTC) problems are presented, and the design and implementation of a novel diagnosis system is described. The system consists of a FDI module composed of properly organized model-based residual filters, exploiting the available input and output information for the detection and localization of an occurred fault. A proper fault mapping procedure and the nonlinear geometric approach are exploited to design residual filters explicitly decoupled from the external aerodynamic disturbance and sensitive to specific sets of faults. The subsequent use of suitable adaptive FE algorithms, based on the exploitation of radial basis function neural networks, allows to obtain accurate fault estimations. Finally, this estimation is actively exploited in a FTC scheme to achieve a suitable fault accommodation and guarantee the desired control performances. A standard sliding mode controller is implemented for attitude stabilization and control. Several simulation results are given to highlight the performances of the overall designed system in case of different types of faults affecting the ADCS actuators and sensors.