6 resultados para Utérus -- Malformations

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: One major problem in counselling couples with a prenatal diagnosis of a correctable fetal anomaly is the ability to exclude associated malformations that may modify the prognosis. Our aim was to assess the precision of fetal sonography in identifying isolated malformations. METHODS: We retrospectively reviewed the prenatal and postnatal records of our center for cases with a prenatal diagnosis of an isolated fetal anomaly in the period 2002-2007. RESULTS: The antenatal diagnosis of an isolated malformation was made in 284 cases. In one of this cases the anomaly disappeared in utero. Of the remaining cases, the prenatal diagnosis was confirmed after birth in 251 (88.7%). In 8 fetuses (7 with a suspected coarctation of the aorta, 1 with ventricular septal defect) the prenatal diagnosis was not confirmed. In 24 fetuses (8.5%) additional malformations were detected at postnatal or post-mortem. In 16 of these cases the anomalies were mild or would not have changed the prognosis. In 8 cases (2.8%) severe anomalies were present (1 hypoplasia of the corpus callosum with ventriculomegaly, 1 tracheal agenesis, 3 cases with multiple anomalies, 1 Opitz Syndrome, 1 with CHARGE Syndrome, 1 COFS Syndrome). Two of these infants died. CONCLUSIONS: the prenatal diagnosis of an isolated fetal anomaly is highly reliable. However, the probability that additional malformations will go undetected albeit small remains tangible. In our experience, it was 2.8%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of the Cerebral Palsy (CP) is considered as the “core problem” for the whole field of the pediatric rehabilitation. The reason why this pathology has such a primary role, can be ascribed to two main aspects. First of all CP is the form of disability most frequent in childhood (one new case per 500 birth alive, (1)), secondarily the functional recovery of the “spastic” child is, historically, the clinical field in which the majority of the therapeutic methods and techniques (physiotherapy, orthotic, pharmacologic, orthopedic-surgical, neurosurgical) were first applied and tested. The currently accepted definition of CP – Group of disorders of the development of movement and posture causing activity limitation (2) – is the result of a recent update by the World Health Organization to the language of the International Classification of Functioning Disability and Health, from the original proposal of Ingram – A persistent but not unchangeable disorder of posture and movement – dated 1955 (3). This definition considers CP as a permanent ailment, i.e. a “fixed” condition, that however can be modified both functionally and structurally by means of child spontaneous evolution and treatments carried out during childhood. The lesion that causes the palsy, happens in a structurally immature brain in the pre-, peri- or post-birth period (but only during the firsts months of life). The most frequent causes of CP are: prematurity, insufficient cerebral perfusion, arterial haemorrhage, venous infarction, hypoxia caused by various origin (for example from the ingestion of amniotic liquid), malnutrition, infection and maternal or fetal poisoning. In addition to these causes, traumas and malformations have to be included. The lesion, whether focused or spread over the nervous system, impairs the whole functioning of the Central Nervous System (CNS). As a consequence, they affect the construction of the adaptive functions (4), first of all posture control, locomotion and manipulation. The palsy itself does not vary over time, however it assumes an unavoidable “evolutionary” feature when during growth the child is requested to meet new and different needs through the construction of new and different functions. It is essential to consider that clinically CP is not only a direct expression of structural impairment, that is of etiology, pathogenesis and lesion timing, but it is mainly the manifestation of the path followed by the CNS to “re”-construct the adaptive functions “despite” the presence of the damage. “Palsy” is “the form of the function that is implemented by an individual whose CNS has been damaged in order to satisfy the demands coming from the environment” (4). Therefore it is only possible to establish general relations between lesion site, nature and size, and palsy and recovery processes. It is quite common to observe that children with very similar neuroimaging can have very different clinical manifestations of CP and, on the other hand, children with very similar motor behaviors can have completely different lesion histories. A very clear example of this is represented by hemiplegic forms, which show bilateral hemispheric lesions in a high percentage of cases. The first section of this thesis is aimed at guiding the interpretation of CP. First of all the issue of the detection of the palsy is treated from historical viewpoint. Consequently, an extended analysis of the current definition of CP, as internationally accepted, is provided. The definition is then outlined in terms of a space dimension and then of a time dimension, hence it is highlighted where this definition is unacceptably lacking. The last part of the first section further stresses the importance of shifting from the traditional concept of CP as a palsy of development (defect analysis) towards the notion of development of palsy, i.e., as the product of the relationship that the individual however tries to dynamically build with the surrounding environment (resource semeiotics) starting and growing from a different availability of resources, needs, dreams, rights and duties (4). In the scientific and clinic community no common classification system of CP has so far been universally accepted. Besides, no standard operative method or technique have been acknowledged to effectively assess the different disabilities and impairments exhibited by children with CP. CP is still “an artificial concept, comprising several causes and clinical syndromes that have been grouped together for a convenience of management” (5). The lack of standard and common protocols able to effectively diagnose the palsy, and as a consequence to establish specific treatments and prognosis, is mainly because of the difficulty to elevate this field to a level based on scientific evidence. A solution aimed at overcoming the current incomplete treatment of CP children is represented by the clinical systematic adoption of objective tools able to measure motor defects and movement impairments. A widespread application of reliable instruments and techniques able to objectively evaluate both the form of the palsy (diagnosis) and the efficacy of the treatments provided (prognosis), constitutes a valuable method able to validate care protocols, establish the efficacy of classification systems and assess the validity of definitions. Since the ‘80s, instruments specifically oriented to the analysis of the human movement have been advantageously designed and applied in the context of CP with the aim of measuring motor deficits and, especially, gait deviations. The gait analysis (GA) technique has been increasingly used over the years to assess, analyze, classify, and support the process of clinical decisions making, allowing for a complete investigation of gait with an increased temporal and spatial resolution. GA has provided a basis for improving the outcome of surgical and nonsurgical treatments and for introducing a new modus operandi in the identification of defects and functional adaptations to the musculoskeletal disorders. Historically, the first laboratories set up for gait analysis developed their own protocol (set of procedures for data collection and for data reduction) independently, according to performances of the technologies available at that time. In particular, the stereophotogrammetric systems mainly based on optoelectronic technology, soon became a gold-standard for motion analysis. They have been successfully applied especially for scientific purposes. Nowadays the optoelectronic systems have significantly improved their performances in term of spatial and temporal resolution, however many laboratories continue to use the protocols designed on the technology available in the ‘70s and now out-of-date. Furthermore, these protocols are not coherent both for the biomechanical models and for the adopted collection procedures. In spite of these differences, GA data are shared, exchanged and interpreted irrespectively to the adopted protocol without a full awareness to what extent these protocols are compatible and comparable with each other. Following the extraordinary advances in computer science and electronics, new systems for GA no longer based on optoelectronic technology, are now becoming available. They are the Inertial and Magnetic Measurement Systems (IMMSs), based on miniature MEMS (Microelectromechanical systems) inertial sensor technology. These systems are cost effective, wearable and fully portable motion analysis systems, these features gives IMMSs the potential to be used both outside specialized laboratories and to consecutive collect series of tens of gait cycles. The recognition and selection of the most representative gait cycle is then easier and more reliable especially in CP children, considering their relevant gait cycle variability. The second section of this thesis is focused on GA. In particular, it is firstly aimed at examining the differences among five most representative GA protocols in order to assess the state of the art with respect to the inter-protocol variability. The design of a new protocol is then proposed and presented with the aim of achieving gait analysis on CP children by means of IMMS. The protocol, named ‘Outwalk’, contains original and innovative solutions oriented at obtaining joint kinematic with calibration procedures extremely comfortable for the patients. The results of a first in-vivo validation of Outwalk on healthy subjects are then provided. In particular, this study was carried out by comparing Outwalk used in combination with an IMMS with respect to a reference protocol and an optoelectronic system. In order to set a more accurate and precise comparison of the systems and the protocols, ad hoc methods were designed and an original formulation of the statistical parameter coefficient of multiple correlation was developed and effectively applied. On the basis of the experimental design proposed for the validation on healthy subjects, a first assessment of Outwalk, together with an IMMS, was also carried out on CP children. The third section of this thesis is dedicated to the treatment of walking in CP children. Commonly prescribed treatments in addressing gait abnormalities in CP children include physical therapy, surgery (orthopedic and rhizotomy), and orthoses. The orthotic approach is conservative, being reversible, and widespread in many therapeutic regimes. Orthoses are used to improve the gait of children with CP, by preventing deformities, controlling joint position, and offering an effective lever for the ankle joint. Orthoses are prescribed for the additional aims of increasing walking speed, improving stability, preventing stumbling, and decreasing muscular fatigue. The ankle-foot orthosis (AFO), with a rigid ankle, are primarily designed to prevent equinus and other foot deformities with a positive effect also on more proximal joints. However, AFOs prevent the natural excursion of the tibio-tarsic joint during the second rocker, hence hampering the natural leaning progression of the whole body under the effect of the inertia (6). A new modular (submalleolar) astragalus-calcanear orthosis, named OMAC, has recently been proposed with the intention of substituting the prescription of AFOs in those CP children exhibiting a flat and valgus-pronated foot. The aim of this section is thus to present the mechanical and technical features of the OMAC by means of an accurate description of the device. In particular, the integral document of the deposited Italian patent, is provided. A preliminary validation of OMAC with respect to AFO is also reported as resulted from an experimental campaign on diplegic CP children, during a three month period, aimed at quantitatively assessing the benefit provided by the two orthoses on walking and at qualitatively evaluating the changes in the quality of life and motor abilities. As already stated, CP is universally considered as a persistent but not unchangeable disorder of posture and movement. Conversely to this definition, some clinicians (4) have recently pointed out that movement disorders may be primarily caused by the presence of perceptive disorders, where perception is not merely the acquisition of sensory information, but an active process aimed at guiding the execution of movements through the integration of sensory information properly representing the state of one’s body and of the environment. Children with perceptive impairments show an overall fear of moving and the onset of strongly unnatural walking schemes directly caused by the presence of perceptive system disorders. The fourth section of the thesis thus deals with accurately defining the perceptive impairment exhibited by diplegic CP children. A detailed description of the clinical signs revealing the presence of the perceptive impairment, and a classification scheme of the clinical aspects of perceptual disorders is provided. In the end, a functional reaching test is proposed as an instrumental test able to disclosure the perceptive impairment. References 1. Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol. 2002 Set;44(9):633-640. 2. Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005 Ago;47(8):571-576. 3. Ingram TT. A study of cerebral palsy in the childhood population of Edinburgh. Arch. Dis. Child. 1955 Apr;30(150):85-98. 4. Ferrari A, Cioni G. The spastic forms of cerebral palsy : a guide to the assessment of adaptive functions. Milan: Springer; 2009. 5. Olney SJ, Wright MJ. Cerebral Palsy. Campbell S et al. Physical Therapy for Children. 2nd Ed. Philadelphia: Saunders. 2000;:533-570. 6. Desloovere K, Molenaers G, Van Gestel L, Huenaerts C, Van Campenhout A, Callewaert B, et al. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study. Gait Posture. 2006 Ott;24(2):142-151.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CL/P are the most common and easily recognizable craniofacial malformations with a complex etiology that requires the involvement of genetic and environmental components. The analysis of the genetic component shows more than 14 loci and genes involved in the onset of the disease. I’ve selected and investigated some of the possible candidate genes for CL/P. MYH14 gene, that maps on chromosome 19, on the OFC3 locus, and shows a strong homology with MYH9 gene. I’ve also investigated TP63 and MID1 genes, that are responsible respectively for EEC syndrome and Opitz syndrome, both of them presenting cleft. I’ve also decided to investigate JAG2 because TP63 product regulates the this gene, and both of them are component of the Notch signalling pathway. I’ve, also, studied the MKX and LMO4 genes. MKX is an important development regulator that is highly expressed in palatal mesenchyme, and map in the region responsible for Twirler mutation that cause cleft in mouse. LMO4 is necessary for neural tube development and cooperating with Grhl3, promotes cellular migration during morphogenetic events like “in utero” cleft healing. Low folate levels and high levels of homocysteine increase the risk of cleft, genes involved in their metabolism may be of interest in cleft occurrence. I’ve decided to investigate BHMT and CBS genes coding for enzymes involved in homocysteine metabolism. I’ve also investigated BHMT2 gene that maps close to BHMT and presents with him a 73% of homology. I’ve performed a linkage analysis using SNPs mapping in the genes and their boundaries, for each gene, for MKX and LMO4 I’ve also performed a sequencing analysis. My results for MID1 and CBS genes support the hypothesis of a possible role of these genes in cleft. I’ve found borderline association values for JAG2, MKX and LMO4 genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Down Syndrome (DS) is the most known autosomal trisomy, due to the presence in three copies of chromosome 21. Many studies were designed to identify phenotypic and clinical consequences related to the triple gene dosage. However, the general conclusion is a senescent phenotype; in particular, the most features of physiological aging, such as skin and hair changes, vision and hearing impairments, thyroid dysfunction, Alzheimer-like dementia, congenital heart defects, gastrointestinal malformations, immune system changes, appear in DS earlier than in normal age-matched subjects. The only established risk factor for the DS is advanced maternal age, responsible for changes in the meiosis of oocytes, in particular the meiotic nondisjunction of chromosome 21. In this process mitochondria play an important role since mitochondrial dysfunction, due to a variety of extrinsic and intrinsic influences, can profoundly influence the level of ATP generation in oocytes, required for a correct chromosomal segregation. Aim. The aim of this study is to investigate an integrated set of molecular genetic parameters (sequencing of complete mtDNA, heteroplasmy of the mtDNA control region, genotypes of APOE gene) in order to identify a possible association with the early neurocognitive decline observed in DS. Results. MtDNA point mutations do not accumulate with age in our study sample and do not correlate with early neurocognitive decline of DS subjects. It seems that D-loop heteroplasmy is largely not inherited and tends to accumulate somatically. Furthermore, in our study sample no association of cognitive impairment and ApoE genotype is found. Conclusions. Overall, our data cast some doubts on the involvement of these mutations in the decline of cognitive functions observed in DS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obiettivo: Valutare l’accuratezza reciproca dell’ecografia “esperta” e della risonanza magnetica nelle diagnosi prenatale delle anomalie congenite. Materiali e metodi: Sono stati retrospettivamente valutati tutti i casi di malformazioni fetali sottoposte a ecografia “esperta” e risonanza magnetica nel nostro Policlinico da Ottobre 2001 a Ottobre 2012. L’età gestazionale media all’ecografia e alla risonanza magnetica sono state rispettivamente di 28 e 30 settimane. La diagnosi ecografica è stata confrontata con la risonanza e quindi con la diagnosi postnatale. Risultati: sono stati selezionati 383 casi, con diagnosi ecografica o sospetta malformazione fetale “complessa” o anamnesi ostetrica positiva infezioni prenatali, valutati con ecografia “esperta”, risonanza magnetica e completi di follow up. La popolazione di studio include: 196 anomalie del sistema nervoso centrale (51,2%), 73 difetti toracici (19,1%), 20 anomalie dell’area viso-collo (5,2%), 29 malformazioni del tratto gastrointestinale (7,6%), 37 difetti genito-urinari (9,7%) e 28 casi con altra indicazione (7,3%). Una concordanza tra ecografia, risonanza e diagnosi postnatale è stata osservata in 289 casi (75,5%) ed è stata maggiore per le anomalie del sistema nervoso centrale 156/196 casi (79,6%) rispetto ai difetti congeniti degli altri distretti anatomici 133/187 (71,1%). La risonanza ha aggiunto importanti informazioni diagnostiche in 42 casi (11%): 21 anomalie del sistema nervoso centrale, 2 difetti dell’area viso collo, 7 malformazioni toraciche, 6 anomalie del tratto gastrointestinale, 5 dell’apparato genitourinario e 1 caso di sospetta emivertebra lombare. L’ecografia è stata più accurata della risonanza in 15 casi (3,9%). In 37 casi (9,7%) entrambe le tecniche hanno dato esito diverso rispetto agli accertamenti postnatali. Conclusioni: l’ecografia prenatale rimane a tutt’oggi la principale metodica di imaging fetale. In alcuni casi complessi e/o dubbi sia del sistema nervoso centrale sia degli altri distretti anatomici la risonanza può aggiungere informazioni rilevanti.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims of the study: To assess the prevalence of Antiepileptic Drug (AED) exposure in pregnant women with or without epilepsy and the comparative risk of terminations of pregnancy (TOPs), spontaneous abortions, stillbirth, major congenital malformations (MCMs) and foetal growth retardation (FGR) following intrauterine AED exposure in the Emilia Romagna region (RER), Northern Italy (4 million inhabitants). Methods: Data were obtained from official regional registries: Certificate of Delivery Assistance, Hospital Discharge Card, reimbursed prescription databases and Registry of Congenital Malformations. We identified all the deliveries, hospitalized abortions and MCMs occurred between January 2009 and December 2011. Results: We identified 145,243 pregnancies: 111,284 deliveries (112,845 live births and 279 stillbirths), 16408 spontaneous abortions and 17551 TOPs. Six hundred and eleven pregnancies (0.42% 95% Cl: 0.39-0.46) were exposed to AEDs. Twenty-one per cent of pregnancies ended in TOP in the AED group vs 12% in the non-exposed (OR:2.24; CI 1.41-3.56). The rate of spontaneous abortions and stillbirth was comparable in the two groups. Three hundred fifty-three babies (0.31%, 95% CI: 0.28-0.35) were exposed to AEDs during the first trimester. The rate of MCMs was 2.3% in the AED group (2.2% in babies exposed to monotherapy and 3.1% in babies exposed to polytherapy) vs 2.0% in the non-exposed. The risk of FGR was 12.7 % in the exposed group compared to 10% in the non-exposed. Discussion and Conclusion: The prevalence of AED exposure in pregnancy in the RER was 0.42%. The rate of MCMs in children exposed to AEDs in utero was almost superimposable to the one of the non-exposed, however polytherapy carried a slightly increased risk . The rate of TOPs was significantly higher in the exposed women. Further studies are needed to clarify whether this high rate reflects a higher rate of MCMs detected prenatally or other more elusive reasons.