2 resultados para Unjust enrichment
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis is primarily based on three core chapters, focused on the fundamental issues of trade secrets law. The goal of this thesis is to come up with policy recommendations to improve legal structure governing trade secrets. The focal points of this research are the following. What is the optimal scope of trade secrets law? How does it depend on the market characteristics such as degree of product differentiation between competing products? What factors need to be considered to balance the contradicting objectives of promoting innovation and knowledge diffusion? The second strand of this research focuses on the desirability of lost profits or unjust enrichment damage regimes in case of misappropriation of a trade secret. A comparison between these regimes is made and simple policy implications are extracted from the analysis. The last part of this research is an empirical analysis of a possible relationship between trade secrets sharing and misappropriation instances faced by firms.
Resumo:
Atmospheric CO2 concentration ([CO2]) has increased over the last 250 years, mainly due to human activities. Of total anthropogenic emissions, almost 31% has been sequestered by the terrestrial biosphere. A considerable contribution to this sink comes from temperate and boreal forest ecosystems of the northern hemisphere, which contain a large amount of carbon (C) stored as biomass and soil organic matter. Several potential drivers for this forest C sequestration have been proposed, including increasing atmospheric [CO2], temperature, nitrogen (N) deposition and changes in management practices. However, it is not known which of these drivers are most important. The overall aim of this thesis project was to develop a simple ecosystem model which explicitly incorporates our best understanding of the mechanisms by which these drivers affect forest C storage, and to use this model to investigate the sensitivity of the forest ecosystem to these drivers. I firstly developed a version of the Generic Decomposition and Yield (G’DAY) model to explicitly investigate the mechanisms leading to forest C sequestration following N deposition. Specifically, I modified the G’DAY model to include advances in understanding of C allocation, canopy N uptake, and leaf trait relationships. I also incorporated a simple forest management practice subroutine. Secondly, I investigated the effect of CO2 fertilization on forest productivity with relation to the soil N availability feedback. I modified the model to allow it to simulate short-term responses of deciduous forests to environmental drivers, and applied it to data from a large-scale forest Free-Air CO2 Enrichment (FACE) experiment. Finally, I used the model to investigate the combined effects of recent observed changes in atmospheric [CO2], N deposition, and climate on a European forest stand. The model developed in my thesis project was an effective tool for analysis of effects of environmental drivers on forest ecosystem C storage. Key results from model simulations include: (i) N availability has a major role in forest ecosystem C sequestration; (ii) atmospheric N deposition is an important driver of N availability on short and long time-scales; (iii) rising temperature increases C storage by enhancing soil N availability and (iv) increasing [CO2] significantly affects forest growth and C storage only when N availability is not limiting.