2 resultados para Uncertainty Management

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The general objective of this research is to explore theories and methodologies of sustainability indicators, environmental management and decision making disciplines with the operational purpose of producing scientific, robust and relevant information for supporting system understanding and decision making in real case studies. Several tools have been applied in order to increase the understanding of socio-ecological systems as well as providing relevant information on the choice between alternatives. These tools have always been applied having in mind the complexity of the issues and the uncertainty tied to the partial knowledge of the systems under study. Two case studies with specific application to performances measurement (environmental performances in the case of the K8 approach and sustainable development performances in the case of the EU Sustainable Development Strategy) and a case study about the selection of sustainable development indicators amongst Municipalities in Scotland, are discussed in the first part of the work. In the second part of the work, the common denominator among subjects consists in the application of spatial indices and indicators to address operational problems in land use management within the territory of the Ravenna province (Italy). The main conclusion of the thesis is that a ‘perfect’ methodological approach which always produces the best results in assessing sustainability performances does not exist. Rather, there is a pool of correct approaches answering different evaluation questions, to be used when methodologies fit the purpose of the analysis. For this reason, methodological limits and conceptual assumptions as well as consistency and transparency of the assessment, become the key factors for assessing the quality of the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis collects the outcomes of a Ph.D. course in Telecommunications engineering and it is focused on enabling techniques for Spread Spectrum (SS) navigation and communication satellite systems. It provides innovations for both interference management and code synchronization techniques. These two aspects are critical for modern navigation and communication systems and constitute the common denominator of the work. The thesis is organized in two parts: the former deals with interference management. We have proposed a novel technique for the enhancement of the sensitivity level of an advanced interference detection and localization system operating in the Global Navigation Satellite System (GNSS) bands, which allows the identification of interfering signals received with power even lower than the GNSS signals. Moreover, we have introduced an effective cancellation technique for signals transmitted by jammers, exploiting their repetitive characteristics, which strongly reduces the interference level at the receiver. The second part, deals with code synchronization. More in detail, we have designed the code synchronization circuit for a Telemetry, Tracking and Control system operating during the Launch and Early Orbit Phase; the proposed solution allows to cope with the very large frequency uncertainty and dynamics characterizing this scenario, and performs the estimation of the code epoch, of the carrier frequency and of the carrier frequency variation rate. Furthermore, considering a generic pair of circuits performing code acquisition, we have proposed a comprehensive framework for the design and the analysis of the optimal cooperation procedure, which minimizes the time required to accomplish synchronization. The study results particularly interesting since it enables the reduction of the code acquisition time without increasing the computational complexity. Finally, considering a network of collaborating navigation receivers, we have proposed an innovative cooperative code acquisition scheme, which allows exploit the shared code epoch information between neighbor nodes, according to the Peer-to-Peer paradigm.