15 resultados para UMTS (Universal Mobile Telecommunications System)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deployment of ultra-dense networks is one of the most promising solutions to manage the phenomenon of co-channel interference that affects the latest wireless communication systems, especially in hotspots. To meet the requirements of the use-cases and the immense amount of traffic generated in these scenarios, 5G ultra-dense networks are being deployed using various technologies, such as distributed antenna system (DAS) and cloud-radio access network (C-RAN). Through these centralized densification schemes, virtualized baseband processing units coordinate the distributed access points and manage the available network resources. In particular, link adaptation techniques are shown to be fundamental to overall system operation and performance enhancement. The core of this dissertation is the result of an analysis and a comparison of dynamic and adaptive methods for modulation and coding scheme (MCS) selection applied to the latest mobile telecommunications standards. A novel algorithm based on the proportional-integral-derivative (PID) controller principles and block error rate (BLER) target has been proposed. Tests were conducted in a 4G and 5G system level laboratory and, by means of a channel emulator, the performance was evaluated for different channel models and target BLERs. Furthermore, due to the intrinsic sectorization of the end-users distribution in the investigated scenario, a preliminary analysis on the joint application of users grouping algorithms with multi-antenna and multi-user techniques has been performed. In conclusion, the importance and impact of other fundamental physical layer operations, such as channel estimation and power control, on the overall end-to-end system behavior and performance were highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last decades have seen an unrivaled growth and diffusion of mobile telecommunications. Several standards have been developed to this purposes, from GSM mobile phone communications to WLAN IEEE 802.11, providing different services for the the transmission of signals ranging from voice to high data rate digital communications and Digital Video Broadcasting (DVB). In this wide research and market field, this thesis focuses on Ultra Wideband (UWB) communications, an emerging technology for providing very high data rate transmissions over very short distances. In particular the presented research deals with the circuit design of enabling blocks for MB-OFDM UWB CMOS single-chip transceivers, namely the frequency synthesizer and the transmission mixer and power amplifier. First we discuss three different models for the simulation of chargepump phase-locked loops, namely the continuous time s-domain and discrete time z-domain approximations and the exact semi-analytical time-domain model. The limitations of the two approximated models are analyzed in terms of error in the computed settling time as a function of loop parameters, deriving practical conditions under which the different models are reliable for fast settling PLLs up to fourth order. Besides, a phase noise analysis method based upon the time-domain model is introduced and compared to the results obtained by means of the s-domain model. We compare the three models over the simulation of a fast switching PLL to be integrated in a frequency synthesizer for WiMedia MB-OFDM UWB systems. In the second part, the theoretical analysis is applied to the design of a 60mW 3.4 to 9.2GHz 12 Bands frequency synthesizer for MB-OFDM UWB based on two wide-band PLLs. The design is presented and discussed up to layout level. A test chip has been implemented in TSMC CMOS 90nm technology, measured data is provided. The functionality of the circuit is proved and specifications are met with state-of-the-art area occupation and power consumption. The last part of the thesis deals with the design of a transmission mixer and a power amplifier for MB-OFDM UWB band group 1. The design has been carried on up to layout level in ST Microlectronics 65nm CMOS technology. Main characteristics of the systems are the wideband behavior (1.6 GHz of bandwidth) and the constant behavior over process parameters, temperature and supply voltage thanks to the design of dedicated adaptive biasing circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi dottorale in oggetto prende spunto da alcune considerazioni di base relative alla salute di una comunità. Infatti quest’ultima si fonda sulla sicurezza dell’ambiente in cui vive e sulla qualità delle relazioni tra i suoi componenti. In questo ambito la mobilità rappresenta uno degli elementi di maggior criticità, sia per la sicurezza delle persone, che per la salute pubblica, che per le conseguenze sull’ambiente che ne derivano. Negli ultimi anni la circolazione stradale è notevolmente aumentata è questo ha portato a notevoli aspetti negativi, uno dei quali è connesso agli incidenti stradali. In tale ambito viene ricordato che l’Unione Europea ha da tempo indicato come obiettivo prioritario il miglioramento della sicurezza stradale e nel 2001 ha fissato il traguardo di dimezzare entro il 2010 il numero delle vittime degli incidenti stradali. Non ultima, l’approvazione da parte del Parlamento europeo e del Consiglio di un atto legislativo (d’imminente pubblicazione sulla GU Europea) relativo alla gestione della sicurezza in tutte le fasi della pianificazione, della progettazione e del funzionamento delle infrastrutture stradali, in cui si evidenzia l’esigenza di una quantificazione della sicurezza stradale. In tale contesto viene sottolineato come uno dei maggiori problemi nella gestione della sicurezza stradale sia la mancanza di un metodo affidabile per stimare e quantificare il livello di sicurezza di una strada esistente o in progetto. Partendo da questa considerazione la tesi si sviluppa mettendo in evidenza le grandezza fondamentali nel problema della sicurezza stradale, (grado di esposizione, rischio d’incidente e le possibili conseguenze sui passeggeri) e analizzando i sistemi adottati tradizionalmente per effettuare analisi di sicurezza: • Statistiche dei dati storici d’incidente; • Previsione da modelli basati su analisi di regressione dei dati incidentali; • Studi Before-After; • Valutazione da giudizi di esperti. Dopo aver analizzato gli aspetti positivi e negativi delle alternative in parola, viene proposto un nuovo approccio, che combina gli elementi di ognuno dei metodi sopra citati in un algoritmo di previsione incidentale. Tale nuovo algoritmo, denominato Interactive Highway Safety Design Model (IHSDM) è stato sviluppato dalla Federal Highway Administration in collaborazione con la Turner Fairbank Higway Research Center ed è specifico per le strade extraurbane a due corsie. Il passo successivo nello sviluppo della tesi è quello di un’analisi dettagliata del modello IHSDM che fornisce il numero totale di incidenti previsti in un certo intervallo temporale. Viene analizzata la struttura del modello, i limiti d’applicabilità, le equazioni che ne sono alla base e i coefficienti moltiplicativi relativi ad ogni caratteristica geometrica e funzionale. Inoltre viene presentata un’ampia analisi di sensibilità che permette di definire quale sia l’influenza d’ogni singolo Fattore di Previsione incidentale (Accident Predication Factor) sul risultato finale. Dai temi trattati, emerge chiaramente come la sicurezza è legata a più sistemi tra loro interconnessi e che per utilizzare e migliorare i modelli previsionali è necessario avere a disposizione dati completi, congruenti, aggiornati e facilmente consultabili. Infatti, anche quando sono disponibili elementi su tutti gli incidenti avvenuti, spesso mancano informazioni di dettaglio ma fondamentali, riguardanti la strada come ad esempio il grado di curvatura, la larghezza della carreggiata o l’aderenza della pavimentazione. In tale ottica, nella tesi viene presentato il Sistema Informativo Stradale (SIS) della Provincia di Bologna, concepito come strumento di gestione delle problematiche inerenti la viabilità e come strumento di supporto per la pianificazione degli interventi e la programmazione delle risorse da investire sulla rete. Viene illustrato come il sistema sia in grado di acquisire, elaborare ed associare dati georeferenziati relativi al territorio sia sotto forma di rappresentazioni grafiche, sia mediante informazioni descrittive di tipo anagrafico ed alfanumerico. Quindi viene descritto il rilievo ad alto rendimento, effettuato con l’ausilio di un laboratorio mobile multifunzionale (Mobile Mapping System), grazie al quale è stato possibile definire con precisione il grafo completo delle strade provinciali e il database contenente i dati relativi al patrimonio infrastrutturale. Tali dati, relativi alle caratteristiche plano-altimetriche dell’asse (rettifili, curve planimetriche, livellette, raccordi altimetrici, ecc...), alla sezione trasversale (numero e larghezza corsie, presenza di banchine, ecc..), all’ambiente circostante e alle strutture annesse vengono presentati in forma completa specificando per ognuno la variabilità specifica. Inoltre viene evidenziato come il database si completi con i dati d’incidentali georeferenziati sul grafo e compresivi di tutte le informazioni contenute nel modello ISTAT CTT/INC spiegandone le possibili conseguenze sul campo dell’analisi di sicurezza. La tesi si conclude con l’applicazione del modello IHSDM ad un caso reale, nello specifico la SP255 di S.Matteo Decima. Infatti tale infrastruttura sarà oggetto di un miglioramento strutturale, finanziato dalla Regione Emilia Romagna, che consistente nell’allargamento della sede stradale attraverso la realizzazione di una banchina pavimentata di 1.00m su entrambi i lati della strada dalla prog. km 19+000 al km 21+200. Attraverso l’utilizzo dell’algoritmo di previsione incidentale è stato possibile quantificare gli effetti di questo miglioramento sul livello di sicurezza dell’infrastruttura e verificare l’attendibilità del modello con e senza storia incidentale pregressa. Questa applicazione ad un caso reale mette in evidenza come le informazioni del SIS possano essere sfruttate a pieno per la realizzazione di un analisi di sicurezza attraverso l’algoritmo di previsione incidentale IHSDM sia nella fase di analisi di uno specifico tronco stradale che in quella fondamentale di calibrazione del modello ad una specifica rete stradale (quella della Provincia di Bologna). Inoltre viene sottolineato come la fruibilità e la completezza dei dati a disposizione, possano costituire la base per sviluppi di ricerca futuri, come ad esempio l’indagine sulle correlazioni esistenti tra le variabili indipendenti che agiscono sulla sicurezza stradale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continuous and swift progression of both wireless and wired communication technologies in today's world owes its success to the foundational systems established earlier. These systems serve as the building blocks that enable the enhancement of services to cater to evolving requirements. Studying the vulnerabilities of previously designed systems and their current usage leads to the development of new communication technologies replacing the old ones such as GSM-R in the railway field. The current industrial research has a specific focus on finding an appropriate telecommunication solution for railway communications that will replace the GSM-R standard which will be switched off in the next years. Various standardization organizations are currently exploring and designing a radiofrequency technology based standard solution to serve railway communications in the form of FRMCS (Future Railway Mobile Communication System) to substitute the current GSM-R. Bearing on this topic, the primary strategic objective of the research is to assess the feasibility to leverage on the current public network technologies such as LTE to cater to mission and safety critical communication for low density lines. The research aims to identify the constraints, define a service level agreement with telecom operators, and establish the necessary implementations to make the system as reliable as possible over an open and public network, while considering safety and cybersecurity aspects. The LTE infrastructure would be utilized to transmit the vital data for the communication of a railway system and to gather and transmit all the field measurements to the control room for maintenance purposes. Given the significance of maintenance activities in the railway sector, the ongoing research includes the implementation of a machine learning algorithm to detect railway equipment faults, reducing time and human analysis errors due to the large volume of measurements from the field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis deals with the development of the upcoming aeronautical mobile airport communications system (AeroMACS) system. We analyzed the performance of AeroMACS and we investigated potential solutions for enhancing its performance. Since the most critical results correspond to the channel scenario having less diversity1, we tackled this problem investigating potential solutions for increasing the diversity of the system and therefore improving its performance. We accounted different forms of diversity as space diversity and time diversity. More specifically, space (antenna and cooperative) diversity and time diversity are analyzed as countermeasures for the harsh fading conditions that are typical of airport environments. Among the analyzed techniques, two novel concepts are introduced, namely unequal diversity coding and flexible packet level codes. The proposed techniques have been analyzed on a novel airport channel model, derived from a measurement campaign at the airport of Munich (Germany). The introduced techniques largely improve the performance of the conventional AeroMACS link; representing thus appealing solutions for the long term evolution of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Providing support for multimedia applications on low-power mobile devices remains a significant research challenge. This is primarily due to two reasons: • Portable mobile devices have modest sizes and weights, and therefore inadequate resources, low CPU processing power, reduced display capabilities, limited memory and battery lifetimes as compared to desktop and laptop systems. • On the other hand, multimedia applications tend to have distinctive QoS and processing requirementswhichmake themextremely resource-demanding. This innate conflict introduces key research challenges in the design of multimedia applications and device-level power optimization. Energy efficiency in this kind of platforms can be achieved only via a synergistic hardware and software approach. In fact, while System-on-Chips are more and more programmable thus providing functional flexibility, hardwareonly power reduction techniques cannot maintain consumption under acceptable bounds. It is well understood both in research and industry that system configuration andmanagement cannot be controlled efficiently only relying on low-level firmware and hardware drivers. In fact, at this level there is lack of information about user application activity and consequently about the impact of power management decision on QoS. Even though operating system support and integration is a requirement for effective performance and energy management, more effective and QoSsensitive power management is possible if power awareness and hardware configuration control strategies are tightly integratedwith domain-specificmiddleware services. The main objective of this PhD research has been the exploration and the integration of amiddleware-centric energymanagement with applications and operating-system. We choose to focus on the CPU-memory and the video subsystems, since they are the most power-hungry components of an embedded system. A second main objective has been the definition and implementation of software facilities (like toolkits, API, and run-time engines) in order to improve programmability and performance efficiency of such platforms. Enhancing energy efficiency and programmability ofmodernMulti-Processor System-on-Chips (MPSoCs) Consumer applications are characterized by tight time-to-market constraints and extreme cost sensitivity. The software that runs on modern embedded systems must be high performance, real time, and even more important low power. Although much progress has been made on these problems, much remains to be done. Multi-processor System-on-Chip (MPSoC) are increasingly popular platforms for high performance embedded applications. This leads to interesting challenges in software development since efficient software development is a major issue for MPSoc designers. An important step in deploying applications on multiprocessors is to allocate and schedule concurrent tasks to the processing and communication resources of the platform. The problem of allocating and scheduling precedenceconstrained tasks on processors in a distributed real-time system is NP-hard. There is a clear need for deployment technology that addresses thesemulti processing issues. This problem can be tackled by means of specific middleware which takes care of allocating and scheduling tasks on the different processing elements and which tries also to optimize the power consumption of the entire multiprocessor platform. This dissertation is an attempt to develop insight into efficient, flexible and optimalmethods for allocating and scheduling concurrent applications tomultiprocessor architectures. It is a well-known problem in literature: this kind of optimization problems are very complex even in much simplified variants, therefore most authors propose simplified models and heuristic approaches to solve it in reasonable time. Model simplification is often achieved by abstracting away platform implementation ”details”. As a result, optimization problems become more tractable, even reaching polynomial time complexity. Unfortunately, this approach creates an abstraction gap between the optimization model and the real HW-SW platform. The main issue with heuristic or, more in general, with incomplete search is that they introduce an optimality gap of unknown size. They provide very limited or no information on the distance between the best computed solution and the optimal one. The goal of this work is to address both abstraction and optimality gaps, formulating accurate models which accounts for a number of ”non-idealities” in real-life hardware platforms, developing novel mapping algorithms that deterministically find optimal solutions, and implementing software infrastructures required by developers to deploy applications for the targetMPSoC platforms. Energy Efficient LCDBacklightAutoregulation on Real-LifeMultimediaAp- plication Processor Despite the ever increasing advances in Liquid Crystal Display’s (LCD) technology, their power consumption is still one of the major limitations to the battery life of mobile appliances such as smart phones, portable media players, gaming and navigation devices. There is a clear trend towards the increase of LCD size to exploit the multimedia capabilities of portable devices that can receive and render high definition video and pictures. Multimedia applications running on these devices require LCD screen sizes of 2.2 to 3.5 inches andmore to display video sequences and pictures with the required quality. LCD power consumption is dependent on the backlight and pixel matrix driving circuits and is typically proportional to the panel area. As a result, the contribution is also likely to be considerable in future mobile appliances. To address this issue, companies are proposing low power technologies suitable for mobile applications supporting low power states and image control techniques. On the research side, several power saving schemes and algorithms can be found in literature. Some of them exploit software-only techniques to change the image content to reduce the power associated with the crystal polarization, some others are aimed at decreasing the backlight level while compensating the luminance reduction by compensating the user perceived quality degradation using pixel-by-pixel image processing algorithms. The major limitation of these techniques is that they rely on the CPU to perform pixel-based manipulations and their impact on CPU utilization and power consumption has not been assessed. This PhDdissertation shows an alternative approach that exploits in a smart and efficient way the hardware image processing unit almost integrated in every current multimedia application processors to implement a hardware assisted image compensation that allows dynamic scaling of the backlight with a negligible impact on QoS. The proposed approach overcomes CPU-intensive techniques by saving system power without requiring either a dedicated display technology or hardware modification. Thesis Overview The remainder of the thesis is organized as follows. The first part is focused on enhancing energy efficiency and programmability of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives an overview about architectural trends in embedded systems, illustrating the principal features of new technologies and the key challenges still open. Chapter 3 presents a QoS-driven methodology for optimal allocation and frequency selection for MPSoCs. The methodology is based on functional simulation and full system power estimation. Chapter 4 targets allocation and scheduling of pipelined stream-oriented applications on top of distributed memory architectures with messaging support. We tackled the complexity of the problem by means of decomposition and no-good generation, and prove the increased computational efficiency of this approach with respect to traditional ones. Chapter 5 presents a cooperative framework to solve the allocation, scheduling and voltage/frequency selection problem to optimality for energyefficient MPSoCs, while in Chapter 6 applications with conditional task graph are taken into account. Finally Chapter 7 proposes a complete framework, called Cellflow, to help programmers in efficient software implementation on a real architecture, the Cell Broadband Engine processor. The second part is focused on energy efficient software techniques for LCD displays. Chapter 8 gives an overview about portable device display technologies, illustrating the principal features of LCD video systems and the key challenges still open. Chapter 9 shows several energy efficient software techniques present in literature, while Chapter 10 illustrates in details our method for saving significant power in an LCD panel. Finally, conclusions are drawn, reporting the main research contributions that have been discussed throughout this dissertation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis deals with channel coding theory applied to upper layers in the protocol stack of a communication link and it is the outcome of four year research activity. A specific aspect of this activity has been the continuous interaction between the natural curiosity related to the academic blue-sky research and the system oriented design deriving from the collaboration with European industry in the framework of European funded research projects. In this dissertation, the classical channel coding techniques, that are traditionally applied at physical layer, find their application at upper layers where the encoding units (symbols) are packets of bits and not just single bits, thus explaining why such upper layer coding techniques are usually referred to as packet layer coding. The rationale behind the adoption of packet layer techniques is in that physical layer channel coding is a suitable countermeasure to cope with small-scale fading, while it is less efficient against large-scale fading. This is mainly due to the limitation of the time diversity inherent in the necessity of adopting a physical layer interleaver of a reasonable size so as to avoid increasing the modem complexity and the latency of all services. Packet layer techniques, thanks to the longer codeword duration (each codeword is composed of several packets of bits), have an intrinsic longer protection against long fading events. Furthermore, being they are implemented at upper layer, Packet layer techniques have the indisputable advantages of simpler implementations (very close to software implementation) and of a selective applicability to different services, thus enabling a better matching with the service requirements (e.g. latency constraints). Packet coding technique improvement has been largely recognized in the recent communication standards as a viable and efficient coding solution: Digital Video Broadcasting standards, like DVB-H, DVB-SH, and DVB-RCS mobile, and 3GPP standards (MBMS) employ packet coding techniques working at layers higher than the physical one. In this framework, the aim of the research work has been the study of the state-of-the-art coding techniques working at upper layer, the performance evaluation of these techniques in realistic propagation scenario, and the design of new coding schemes for upper layer applications. After a review of the most important packet layer codes, i.e. Reed Solomon, LDPC and Fountain codes, in the thesis focus our attention on the performance evaluation of ideal codes (i.e. Maximum Distance Separable codes) working at UL. In particular, we analyze the performance of UL-FEC techniques in Land Mobile Satellite channels. We derive an analytical framework which is a useful tool for system design allowing to foresee the performance of the upper layer decoder. We also analyze a system in which upper layer and physical layer codes work together, and we derive the optimal splitting of redundancy when a frequency non-selective slowly varying fading channel is taken into account. The whole analysis is supported and validated through computer simulation. In the last part of the dissertation, we propose LDPC Convolutional Codes (LDPCCC) as possible coding scheme for future UL-FEC application. Since one of the main drawbacks related to the adoption of packet layer codes is the large decoding latency, we introduce a latency-constrained decoder for LDPCCC (called windowed erasure decoder). We analyze the performance of the state-of-the-art LDPCCC when our decoder is adopted. Finally, we propose a design rule which allows to trade-off performance and latency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuous advancements and enhancements of wireless systems are enabling new compelling scenarios where mobile services can adapt according to the current execution context, represented by the computational resources available at the local device, current physical location, people in physical proximity, and so forth. Such services called context-aware require the timely delivery of all relevant information describing the current context, and that introduces several unsolved complexities, spanning from low-level context data transmission up to context data storage and replication into the mobile system. In addition, to ensure correct and scalable context provisioning, it is crucial to integrate and interoperate with different wireless technologies (WiFi, Bluetooth, etc.) and modes (infrastructure-based and ad-hoc), and to use decentralized solutions to store and replicate context data on mobile devices. These challenges call for novel middleware solutions, here called Context Data Distribution Infrastructures (CDDIs), capable of delivering relevant context data to mobile devices, while hiding all the issues introduced by data distribution in heterogeneous and large-scale mobile settings. This dissertation thoroughly analyzes CDDIs for mobile systems, with the main goal of achieving a holistic approach to the design of such type of middleware solutions. We discuss the main functions needed by context data distribution in large mobile systems, and we claim the precise definition and clean respect of quality-based contracts between context consumers and CDDI to reconfigure main middleware components at runtime. We present the design and the implementation of our proposals, both in simulation-based and in real-world scenarios, along with an extensive evaluation that confirms the technical soundness of proposed CDDI solutions. Finally, we consider three highly heterogeneous scenarios, namely disaster areas, smart campuses, and smart cities, to better remark the wide technical validity of our analysis and solutions under different network deployments and quality constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photovoltaic (PV) solar panels generally produce electricity in the 6% to 16% efficiency range, the rest being dissipated in thermal losses. To recover this amount, hybrid photovoltaic thermal systems (PVT) have been devised. These are devices that simultaneously convert solar energy into electricity and heat. It is thus interesting to study the PVT system globally from different point of views in order to evaluate advantages and disadvantages of this technology and its possible uses. In particular in Chapter II, the development of the PVT absorber numerical optimization by a genetic algorithm has been carried out analyzing different internal channel profiles in order to find a right compromise between performance and technical and economical feasibility. Therefore in Chapter III ,thanks to a mobile structure built into the university lab, it has been compared experimentally electrical and thermal output power from PVT panels with separated photovoltaic and solar thermal productions. Collecting a lot of experimental data based on different seasonal conditions (ambient temperature,irradiation, wind...),the aim of this mobile structure has been to evaluate average both thermal and electrical increasing and decreasing efficiency values obtained respect to separate productions through the year. In Chapter IV , new PVT and solar thermal equation based models in steady state conditions have been developed by software Dymola that uses Modelica language. This permits ,in a simplified way respect to previous system modelling softwares, to model and evaluate different concepts about PVT panel regarding its structure before prototyping and measuring it. Chapter V concerns instead the definition of PVT boundary conditions into a HVAC system . This was made trough year simulations by software Polysun in order to finally assess the best solar assisted integrated structure thanks to F_save(solar saving energy)factor. Finally, Chapter VI presents the conclusion and the perspectives of this PhD work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of a passive back-to-back test rig have been characterised, leading to a multi-coordinate approach for the analysis of arbitrary test configurations. Universal joints have been introduced into a typical pre-loaded back-to-back system in order to produce an oscillating torsional moment in a test specimen. Two different arrangements have been investigated using a frequency-based sub-structuring approach: the receptance method. A numerical model has been developed in accordance with this theory, allowing interconnection of systems with two-coordinates and closed multi-loop schemes. The model calculates the receptance functions and modal and deflected shapes of a general system. Closed form expressions of the following individual elements have been developed: a servomotor, damped continuous shaft and a universal joint. Numerical results for specific cases have been compared with published data in literature and experimental measurements undertaken in the present work. Due to the complexity of the universal joint and its oscillating dynamic effects, a more detailed analysis of this component has been developed. Two models have been presented. The first represents the joint as two inertias connected by a massless cross-piece. The second, derived by the dynamic analysis of a spherical four-link mechanism, considers the contribution of the floating element and its gyroscopic effects. An investigation into non-linear behaviour has led to a time domain model that utilises the Runge-Kutta fourth order method for resolution of the dynamic equations. It has been demonstrated that the torsional receptances of a universal joint, derived using the simple model, result in representation of the joint as an equivalent variable inertia. In order to verify the model, a test rig has been built and experimental validation undertaken. The variable inertia of a universal joint has lead to a novel application of the component as a passive device for the balancing of inertia variations in slider-crank mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of 5G, several novel network paradigms and technologies have been proposed to fulfil the key requirements imposed. Flexibility, efficiency and scalability, along with sustainability and convenience for expenditure have to be addressed in targeting these brand new needs. Among novel paradigms introduced in the scientific literature in recent years, a constant and increasing interest lies in the use of unmanned aerial vehicles (UAVs) as network nodes supporting the legacy terrestrial network for service provision. Their inherent features of moving nodes make them able to be deployed on-demand in real-time. Which, in practical terms, means having them acting as a base station (BS) when and where there is the highest need. This thesis investigates then the potential role of UAV-aided mobile radio networks, in order to validate the concept of adding an aerial network component and assess the system performance, from early to later stages of its deployment. This study is intended for 5G and beyond systems, to allow time for the technology to mature. Since advantages can be manyfold, the aerial network component is considered at the network layer under several aspects, from connectivity to radio resource management. A particular emphasis is given to trajectory design, because of the efficiency and flexibility it potentially adds to the infrastructure. Two different frameworks have been proposed, to take into account both a re-adaptable heuristic and an optimal solution. Moreover, diverse use cases are taken under analysis, from mobile broadband to machine and vehicular communications. The thesis aim is thus to discuss the potential and advantages of UAV-aided systems from a broad perspective. Results demonstrate that the technology has good prospects for diverse scenarios with a few arrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Safe collaboration between a robot and human operator forms a critical requirement for deploying a robotic system into a manufacturing and testing environment. In this dissertation, the safety requirement for is developed and implemented for the navigation system of the mobile manipulators. A methodology for human-robot co-existence through a 3d scene analysis is also investigated. The proposed approach exploits the advance in computing capability by relying on graphic processing units (GPU’s) for volumetric predictive human-robot contact checking. Apart from guaranteeing safety of operators, human-robot collaboration is also fundamental when cooperative activities are required, as in appliance test automation floor. To achieve this, a generalized hierarchical task controller scheme for collision avoidance is developed. This allows the robotic arm to safely approach and inspect the interior of the appliance without collision during the testing procedure. The unpredictable presence of the operators also forms dynamic obstacle that changes very fast, thereby requiring a quick reaction from the robot side. In this aspect, a GPU-accelarated distance field is computed to speed up reaction time to avoid collision between human operator and the robot. An automated appliance testing also involves robotized laundry loading and unloading during life cycle testing. This task involves Laundry detection, grasp pose estimation and manipulation in a container, inside the drum and during recovery grasping. A wrinkle and blob detection algorithms for grasp pose estimation are developed and grasp poses are calculated along the wrinkle and blobs to efficiently perform grasping task. By ranking the estimated laundry grasp poses according to a predefined cost function, the robotic arm attempt to grasp poses that are more comfortable from the robot kinematic side as well as collision free on the appliance side. This is achieved through appliance detection and full-model registration and collision free trajectory execution using online collision avoidance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past years, ray tracing (RT) models popularity has been increasing. From the nineties, RT has been used for field prediction in environment such as indoor and urban environments. Nevertheless, with the advent of new technologies, the channel model has become decidedly more dynamic and to perform RT simulations at each discrete time instant become computationally expensive. In this thesis, a new dynamic ray tracing (DRT) approach is presented in which from a single ray tracing simulation at an initial time t0, through analytical formulas we are able to track the motion of the interaction points. The benefits that this approach bring are that Doppler frequencies and channel prediction can be derived at every time instant, without recurring to multiple RT runs and therefore shortening the computation time. DRT performance was studied on two case studies and the results shows the accuracy and the computational gain that derives from this approach. Another issue that has been addressed in this thesis is the licensed band exhaustion of some frequency bands. To deal with this problem, a novel unselfish spectrum leasing scheme in cognitive radio networks (CRNs) is proposed that offers an energy-efficient solution minimizing the environmental impact of the network. In addition, a network management architecture is introduced and resource allocation is proposed as a constrained sum energy efficiency maximization problem. System simulations demonstrate an increment in the energy efficiency of the primary users’ network compared with previously proposed algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The industrial context is changing rapidly due to advancements in technology fueled by the Internet and Information Technology. The fourth industrial revolution counts integration, flexibility, and optimization as its fundamental pillars, and, in this context, Human-Robot Collaboration has become a crucial factor for manufacturing sustainability in Europe. Collaborative robots are appealing to many companies due to their low installation and running costs and high degree of flexibility, making them ideal for reshoring production facilities with a short return on investment. The ROSSINI European project aims to implement a true Human-Robot Collaboration by designing, developing, and demonstrating a modular and scalable platform for integrating human-centred robotic technologies in industrial production environments. The project focuses on safety concerns related to introducing a cobot in a shared working area and aims to lay the groundwork for a new working paradigm at the industrial level. The need for a software architecture suitable to the robotic platform employed in one of three use cases selected to deploy and test the new technology was the main trigger of this Thesis. The chosen application consists of the automatic loading and unloading of raw-material reels to an automatic packaging machine through an Autonomous Mobile Robot composed of an Autonomous Guided Vehicle, two collaborative manipulators, and an eye-on-hand vision system for performing tasks in a partially unstructured environment. The results obtained during the ROSSINI use case development were later used in the SENECA project, which addresses the need for robot-driven automatic cleaning of pharmaceutical bins in a very specific industrial context. The inherent versatility of mobile collaborative robots is evident from their deployment in the two projects with few hardware and software adjustments. The positive impact of Human-Robot Collaboration on diverse production lines is a motivation for future investments in research on this increasingly popular field by the industry.