2 resultados para UHF antennas

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent widespread diffusion of radio-frequency identification (RFID) applications operating in the UHF band has been supported by both the request for greater interrogation ranges and greater and faster data exchange. UHF-RFID systems, exploiting a physical interaction based on Electromagnetic propagation, introduce many problems that have not been fully explored for the previous generations of RFID systems (e.g. HF). Therefore, the availability of reliable tools for modeling and evaluating the radio-communication between Reader and Tag within an RFID radio-link are needed. The first part of the thesis discuss the impact of real environment on system performance. In particular an analytical closed form formulation for the back-scattered field from the Tag antenna and the formulation for the lower bound of the BER achievable at the Reader side will be presented, considering different possible electromagnetic impairments. By means of the previous formulations, of the analysis of the RFID link operating in near filed conditions and of some electromagnetic/system-level co-simulations, an in-depth study of the dimensioning parameters and the actual performance of the systems will be discussed and analyzed, showing some relevant properties and trade-offs in transponder and reader design. Moreover a new low cost approach to extend the read range of the RFID UHF passive systems will be discussed. Within the scope to check the reliability of the analysis approaches and of innovative proposals, some reference transponder antennas have been designed and extensive measurement campaign has been carried out with satisfactory results. Finally, some commercial ad-hoc transponder for industrial application have been designed within the cooperation with Datalogic s.p.a., some guidelines and results will be briefly presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present PhD thesis exploits the design skills I have been improving since my master thesis’ research. A brief description of the chapters’ content follows. Chapter 1: the simulation of a complete front–end is a very complex problem and, in particular, is the basis upon which the prediction of the overall performance of the system is possible. By means of a commercial EM simulation tool and a rigorous nonlinear/EM circuit co–simulation based on the Reciprocity Theorem, the above–mentioned prediction can be achieved and exploited for wireless links characterization. This will represent the theoretical basics of the entire present thesis and will be supported by two RF applications. Chapter 2: an extensive dissertation about Magneto–Dielectric (MD) materials will be presented, together with their peculiar characteristics as substrates for antenna miniaturization purposes. A designed and tested device for RF on–body applications will be described in detail. Finally, future research will be discussed. Chapter 3: this chapter will deal with the issue regarding the exploitation of renewable energy sources for low–energy consumption devices. Hence the problem related to the so–called energy harvesting will be tackled and a first attempt to deploy THz solar energy in an innovative way will be presented and discussed. Future research will be proposed as well. Chapter 4: graphene is a very promising material for devices to be exploited in the RF and THz frequency range for a wide range of engineering applications, including those ones marked as the main research goal of the present thesis. This chapter will present the results obtained during my research period at the National Institute for Research and Development in Microtechnologies (IMT) in Bucharest, Romania. It will concern the design and manufacturing of antennas and diodes made in graphene–based technology for detection/rectification purposes.