10 resultados para UAV
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This PhD thesis presents the results, achieved at the Aerospace Engineering Department Laboratories of the University of Bologna, concerning the development of a small scale Rotary wing UAVs (RUAVs). In the first part of the work, a mission simulation environment for rotary wing UAVs was developed, as main outcome of the University of Bologna partnership in the CAPECON program (an EU funded research program aimed at studying the UAVs civil applications and economic effectiveness of the potential configuration solutions). The results achieved in cooperation with DLR (German Aerospace Centre) and with an helicopter industrial partners will be described. In the second part of the work, the set-up of a real small scale rotary wing platform was performed. The work was carried out following a series of subsequent logical steps from hardware selection and set-up to final autonomous flight tests. This thesis will focus mainly on the RUAV avionics package set-up, on the onboard software development and final experimental tests. The setup of the electronic package allowed recording of helicopter responses to pilot commands and provided deep insight into the small scale rotorcraft dynamics, facilitating the development of helicopter models and control systems in a Hardware In the Loop (HIL) simulator. A neested PI velocity controller1 was implemented on the onboard computer and autonomous flight tests were performed. Comparison between HIL simulation and experimental results showed good agreement.
Resumo:
Recent statistics have demonstrated that two of the most important causes of failures of the UAVs (Uninhabited Aerial Vehicle) missions are related to the low level of decisional autonomy of vehicles and to the man machine interface. Therefore, a relevant issue is to design a display/controls architecture which allows the efficient interaction between the operator and the remote vehicle and to develop a level of automation which allows the vehicle the decision about change in mission. The research presented in this paper focuses on a modular man-machine interface simulator for the UAV control, which simulates UAV missions, developed to experiment solution to this problem. The main components of the simulator are an advanced interface and a block defined automation, which comprehend an algorithm that implements the level of automation of the system. The simulator has been designed and developed following a user-centred design approach in order to take into account the operator’s needs in the communication with the vehicle. The level of automation has been developed following the supervisory control theory which says that the human became a supervisor who sends high level commands, such as part of mission, target, constraints, in then-rule, while the vehicle receives, comprehends and translates such commands into detailed action such as routes or action on the control system. In order to allow the vehicle to calculate and recalculate the safe and efficient route, in term of distance, time and fuel a 3D planning algorithm has been developed. It is based on considering UASs representative of real world systems as objects moving in a virtual environment (terrain, obstacles, and no fly zones) which replicates the airspace. Original obstacle avoidance strategies have been conceived in order to generate mission planes which are consistent with flight rules and with the vehicle performance constraints. The interface is based on a touch screen, used to send high level commands to the vehicle, and a 3D Virtual Display which provides a stereoscopic and augmented visualization of the complex scenario in which the vehicle operates. Furthermore, it is provided with an audio feedback message generator. Simulation tests have been conducted with pilot trainers to evaluate the reliability of the algorithm and the effectiveness and efficiency of the interface in supporting the operator in the supervision of an UAV mission. Results have revealed that the planning algorithm calculate very efficient routes in few seconds, an adequate level of workload is required to command the vehicle and that the 3D based interface provides the operator with a good sense of presence and enhances his awareness of the mission scenario and of the vehicle under his control.
Resumo:
A pursuer UAV tracking and loitering around a target is the problem analyzed in this thesis. The UAV is assumed to be a fixed-wing vehicle and constant airspeed together with bounded lateral accelerations are the main constraints of the problem. Three different guidance laws are designed for ensuring a continuos overfly on the target. Different proofs are presented to demonstrate the stability properties of the laws. All the algorithms are tested on a 6DoF Pioneer software simulator. Classic control design methods have been adopted to develop autopilots for implementig the simulation platform used for testing the guidance laws.
Resumo:
With the advent of 5G, several novel network paradigms and technologies have been proposed to fulfil the key requirements imposed. Flexibility, efficiency and scalability, along with sustainability and convenience for expenditure have to be addressed in targeting these brand new needs. Among novel paradigms introduced in the scientific literature in recent years, a constant and increasing interest lies in the use of unmanned aerial vehicles (UAVs) as network nodes supporting the legacy terrestrial network for service provision. Their inherent features of moving nodes make them able to be deployed on-demand in real-time. Which, in practical terms, means having them acting as a base station (BS) when and where there is the highest need. This thesis investigates then the potential role of UAV-aided mobile radio networks, in order to validate the concept of adding an aerial network component and assess the system performance, from early to later stages of its deployment. This study is intended for 5G and beyond systems, to allow time for the technology to mature. Since advantages can be manyfold, the aerial network component is considered at the network layer under several aspects, from connectivity to radio resource management. A particular emphasis is given to trajectory design, because of the efficiency and flexibility it potentially adds to the infrastructure. Two different frameworks have been proposed, to take into account both a re-adaptable heuristic and an optimal solution. Moreover, diverse use cases are taken under analysis, from mobile broadband to machine and vehicular communications. The thesis aim is thus to discuss the potential and advantages of UAV-aided systems from a broad perspective. Results demonstrate that the technology has good prospects for diverse scenarios with a few arrangements.
Resumo:
Recent progress in microelectronic and wireless communications have enabled the development of low cost, low power, multifunctional sensors, which has allowed the birth of new type of networks named wireless sensor networks (WSNs). The main features of such networks are: the nodes can be positioned randomly over a given field with a high density; each node operates both like sensor (for collection of environmental data) as well as transceiver (for transmission of information to the data retrieval); the nodes have limited energy resources. The use of wireless communications and the small size of nodes, make this type of networks suitable for a large number of applications. For example, sensor nodes can be used to monitor a high risk region, as near a volcano; in a hospital they could be used to monitor physical conditions of patients. For each of these possible application scenarios, it is necessary to guarantee a trade-off between energy consumptions and communication reliability. The thesis investigates the use of WSNs in two possible scenarios and for each of them suggests a solution that permits to solve relating problems considering the trade-off introduced. The first scenario considers a network with a high number of nodes deployed in a given geographical area without detailed planning that have to transmit data toward a coordinator node, named sink, that we assume to be located onboard an unmanned aerial vehicle (UAV). This is a practical example of reachback communication, characterized by the high density of nodes that have to transmit data reliably and efficiently towards a far receiver. It is considered that each node transmits a common shared message directly to the receiver onboard the UAV whenever it receives a broadcast message (triggered for example by the vehicle). We assume that the communication channels between the local nodes and the receiver are subject to fading and noise. The receiver onboard the UAV must be able to fuse the weak and noisy signals in a coherent way to receive the data reliably. It is proposed a cooperative diversity concept as an effective solution to the reachback problem. In particular, it is considered a spread spectrum (SS) transmission scheme in conjunction with a fusion center that can exploit cooperative diversity, without requiring stringent synchronization between nodes. The idea consists of simultaneous transmission of the common message among the nodes and a Rake reception at the fusion center. The proposed solution is mainly motivated by two goals: the necessity to have simple nodes (to this aim we move the computational complexity to the receiver onboard the UAV), and the importance to guarantee high levels of energy efficiency of the network, thus increasing the network lifetime. The proposed scheme is analyzed in order to better understand the effectiveness of the approach presented. The performance metrics considered are both the theoretical limit on the maximum amount of data that can be collected by the receiver, as well as the error probability with a given modulation scheme. Since we deal with a WSN, both of these performance are evaluated taking into consideration the energy efficiency of the network. The second scenario considers the use of a chain network for the detection of fires by using nodes that have a double function of sensors and routers. The first one is relative to the monitoring of a temperature parameter that allows to take a local binary decision of target (fire) absent/present. The second one considers that each node receives a decision made by the previous node of the chain, compares this with that deriving by the observation of the phenomenon, and transmits the final result to the next node. The chain ends at the sink node that transmits the received decision to the user. In this network the goals are to limit throughput in each sensor-to-sensor link and minimize probability of error at the last stage of the chain. This is a typical scenario of distributed detection. To obtain good performance it is necessary to define some fusion rules for each node to summarize local observations and decisions of the previous nodes, to get a final decision that it is transmitted to the next node. WSNs have been studied also under a practical point of view, describing both the main characteristics of IEEE802:15:4 standard and two commercial WSN platforms. By using a commercial WSN platform it is realized an agricultural application that has been tested in a six months on-field experimentation.
Resumo:
The main goal of the Airborne project is to develop, at technology readiness level 8 (TRL8), a few selected robotic aerial technologies for quick localization of victims by avalanches by equipping drones with two forefront sensors used in SAR operations in case of avalanches, namely the ARVA and RECCO. This thesis focuses on the design, development, and guidance of the TRL8 quadrotor developed during the project. We present and describe the design method that allowed us to obtain an EMI shielded UAV capable of integrating both RECCO and ARVA sensors. Besides, is presented the avionics and power train design and building procedure in order to obtain a modular UAV frame that can be easily carried by rescuers and achieves all the performance benchmarks of the project. Additionally, in addition to the onboard algorithms, a multivariate regressive convolutional neural network whose goal is the localization of the ARVA signal is presented. On guidance, the automatic flight procedure is described, and the onboard waypoint generator algorithm is presented. The goal of this algorithm is the generation and execution of an automatic grid pattern without the need to know the map in advance and without the support of a control ground station (CGS). Moreover, we present an iterative trajectory planner that does not need pre-knowledge of the map and uses Bézier curves to address optimal, dynamically feasible, safe, and re-plannable trajectories. The goal is to develop a method that allows local and fast replannings in case of an obstacle pop up or if some waypoints change. This makes the novel planner suitable to be applied in SAR operations. The introduction of the final version of the quadrotor is supported by internal flight tests and field tests performed in real operative scenarios by the Club Alpino Italiano (CAI).
Resumo:
The Internet of Things (IoT) has grown rapidly in recent years, leading to an increased need for efficient and secure communication between connected devices. Wireless Sensor Networks (WSNs) are composed of small, low-power devices that are capable of sensing and exchanging data, and are often used in IoT applications. In addition, Mesh WSNs involve intermediate nodes forwarding data to ensure more robust communication. The integration of Unmanned Aerial Vehicles (UAVs) in Mesh WSNs has emerged as a promising solution for increasing the effectiveness of data collection, as UAVs can act as mobile relays, providing extended communication range and reducing energy consumption. However, the integration of UAVs and Mesh WSNs still poses new challenges, such as the design of efficient control and communication strategies. This thesis explores the networking capabilities of WSNs and investigates how the integration of UAVs can enhance their performance. The research focuses on three main objectives: (1) Ground Wireless Mesh Sensor Networks, (2) Aerial Wireless Mesh Sensor Networks, and (3) Ground/Aerial WMSN integration. For the first objective, we investigate the use of the Bluetooth Mesh standard for IoT monitoring in different environments. The second objective focuses on deploying aerial nodes to maximize data collection effectiveness and QoS of UAV-to-UAV links while maintaining the aerial mesh connectivity. The third objective investigates hybrid WMSN scenarios with air-to-ground communication links. One of the main contribution of the thesis consists in the design and implementation of a software framework called "Uhura", which enables the creation of Hybrid Wireless Mesh Sensor Networks and abstracts and handles multiple M2M communication stacks on both ground and aerial links. The operations of Uhura have been validated through simulations and small-scale testbeds involving ground and aerial devices.
Resumo:
The advances in the aviation field, particularly the development of electric flying vehicles, as UAV and eVTOL, paved the way for setting Urban Air Mobility (UAM) services. UAM would provide services for passengers, goods and emergencies and could offer faster trips than ground ones. It is expected that early UAM operations will be performed at Very Low-Level airspace as 0-500 m Above Ground Level. The purpose of this research is to both explore the main features of UAM and test an aerial network model, which could be integrated in a multimodal transport system where ground and aerial mobility services are provided. Analyses on UAM transport system involved two sub-systems: the transport demand sub-system, i.e., the mobility requirements, and the transport supply sub-system, i.e., the service and facilities enabling mobility. At first, the UAM demand levels and features for an Airport Shuttle service have been explored through a suitable survey, by combining Revealed and Stated Preference methodologies, and by calibrating some discrete mode choice models. Then, the focus has been on the transport supply model for UAM services, by focusing on both the ground access points (vertiports) and the aerial network model. A suitable three-dimensional urban aerial network (3D-UAN) model that could support fast aerial connections between O/D pairs has been proposed. Some tests have been implemented to verify the feasibility of the proposed model. Some flying vehicles supporting an Airport Shuttle service have been simulated on the aerial network, which has been specified in terms of both topological features and link transport costs. The preliminary results have showed that the proposed 3D-UAN model could be suitable for supporting UAM services. As for transport engineering, the UAM system framework proposed in this thesis paves the way for further research on air-ground multimodality in urban areas.
Resumo:
Spiking Neural Networks (SNNs) are bio-inspired Artificial Neural Networks (ANNs) utilizing discrete spiking signals, akin to neuron communication in the brain, making them ideal for real-time and energy-efficient Cyber-Physical Systems (CPSs). This thesis explores their potential in Structural Health Monitoring (SHM), leveraging low-cost MEMS accelerometers for early damage detection in motorway bridges. The study focuses on Long Short-Term SNNs (LSNNs), although their complex learning processes pose challenges. Comparing LSNNs with other ANN models and training algorithms for SHM, findings indicate LSNNs' effectiveness in damage identification, comparable to ANNs trained using traditional methods. Additionally, an optimized embedded LSNN implementation demonstrates a 54% reduction in execution time, but with longer pre-processing due to spike-based encoding. Furthermore, SNNs are applied in UAV obstacle avoidance, trained directly using a Reinforcement Learning (RL) algorithm with event-based input from a Dynamic Vision Sensor (DVS). Performance evaluation against Convolutional Neural Networks (CNNs) highlights SNNs' superior energy efficiency, showing a 6x decrease in energy consumption. The study also investigates embedded SNN implementations' latency and throughput in real-world deployments, emphasizing their potential for energy-efficient monitoring systems. This research contributes to advancing SHM and UAV obstacle avoidance through SNNs' efficient information processing and decision-making capabilities within CPS domains.