13 resultados para Two variable oregonator model

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wave breaking is an important coastal process, influencing hydro-morphodynamic processes such as turbulence generation and wave energy dissipation, run-up on the beach and overtopping of coastal defence structures. During breaking, waves are complex mixtures of air and water (“white water”) whose properties affect velocity and pressure fields in the vicinity of the free surface and, depending on the breaker characteristics, different mechanisms for air entrainment are usually observed. Several laboratory experiments have been performed to investigate the role of air bubbles in the wave breaking process (Chanson & Cummings, 1994, among others) and in wave loading on vertical wall (Oumeraci et al., 2001; Peregrine et al., 2006, among others), showing that the air phase is not negligible since the turbulent energy dissipation involves air-water mixture. The recent advancement of numerical models has given valuable insights in the knowledge of wave transformation and interaction with coastal structures. Among these models, some solve the RANS equations coupled with a free-surface tracking algorithm and describe velocity, pressure, turbulence and vorticity fields (Lara et al. 2006 a-b, Clementi et al., 2007). The single-phase numerical model, in which the constitutive equations are solved only for the liquid phase, neglects effects induced by air movement and trapped air bubbles in water. Numerical approximations at the free surface may induce errors in predicting breaking point and wave height and moreover, entrapped air bubbles and water splash in air are not properly represented. The aim of the present thesis is to develop a new two-phase model called COBRAS2 (stands for Cornell Breaking waves And Structures 2 phases), that is the enhancement of the single-phase code COBRAS0, originally developed at Cornell University (Lin & Liu, 1998). In the first part of the work, both fluids are considered as incompressible, while the second part will treat air compressibility modelling. The mathematical formulation and the numerical resolution of the governing equations of COBRAS2 are derived and some model-experiment comparisons are shown. In particular, validation tests are performed in order to prove model stability and accuracy. The simulation of the rising of a large air bubble in an otherwise quiescent water pool reveals the model capability to reproduce the process physics in a realistic way. Analytical solutions for stationary and internal waves are compared with corresponding numerical results, in order to test processes involving wide range of density difference. Waves induced by dam-break in different scenarios (on dry and wet beds, as well as on a ramp) are studied, focusing on the role of air as the medium in which the water wave propagates and on the numerical representation of bubble dynamics. Simulations of solitary and regular waves, characterized by both spilling and plunging breakers, are analyzed with comparisons with experimental data and other numerical model in order to investigate air influence on wave breaking mechanisms and underline model capability and accuracy. Finally, modelling of air compressibility is included in the new developed model and is validated, revealing an accurate reproduction of processes. Some preliminary tests on wave impact on vertical walls are performed: since air flow modelling allows to have a more realistic reproduction of breaking wave propagation, the dependence of wave breaker shapes and aeration characteristics on impact pressure values is studied and, on the basis of a qualitative comparison with experimental observations, the numerical simulations achieve good results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Running economy (RE), i.e. the oxygen consumption at a given submaximal speed, is an important determinant of endurance running performance. So far, investigators have widely attempted to individuate the factors affecting RE in competitive athletes, focusing mainly on the relationships between RE and running biomechanics. However, the current results are inconsistent and a clear mechanical profile of an economic runner has not been yet established. The present work aimed to better understand how the running technique influences RE in sub-elite middle-distance runners by investigating the biomechanical parameters acting on RE and the underlying mechanisms. Special emphasis was given to accounting for intra-individual variability in RE at different speeds and to assessing track running rather than treadmill running. In Study One, a factor analysis was used to reduce the 30 considered mechanical parameters to few global descriptors of the running mechanics. Then, a biomechanical comparison between economic and non economic runners and a multiple regression analysis (with RE as criterion variable and mechanical indices as independent variables) were performed. It was found that a better RE was associated to higher knee and ankle flexion in the support phase, and that the combination of seven individuated mechanical measures explains ∼72% of the variability in RE. In Study Two, a mathematical model predicting RE a priori from the rate of force production, originally developed and used in the field of comparative biology, was adapted and tested in competitive athletes. The model showed a very good fit (R2=0.86). In conclusion, the results of this dissertation suggest that the very complex interrelationships among the mechanical parameters affecting RE may be successfully dealt with through multivariate statistical analyses and the application of theoretical mathematical models. Thanks to these results, coaches are provided with useful tools to assess the biomechanical profile of their athletes. Thus, individual weaknesses in the running technique may be identified and removed, with the ultimate goal to improve RE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Assimilation in the Unstable Subspace (AUS) was introduced by Trevisan and Uboldi in 2004, and developed by Trevisan, Uboldi and Carrassi, to minimize the analysis and forecast errors by exploiting the flow-dependent instabilities of the forecast-analysis cycle system, which may be thought of as a system forced by observations. In the AUS scheme the assimilation is obtained by confining the analysis increment in the unstable subspace of the forecast-analysis cycle system so that it will have the same structure of the dominant instabilities of the system. The unstable subspace is estimated by Breeding on the Data Assimilation System (BDAS). AUS- BDAS has already been tested in realistic models and observational configurations, including a Quasi-Geostrophicmodel and a high dimensional, primitive equation ocean model; the experiments include both fixed and“adaptive”observations. In these contexts, the AUS-BDAS approach greatly reduces the analysis error, with reasonable computational costs for data assimilation with respect, for example, to a prohibitive full Extended Kalman Filter. This is a follow-up study in which we revisit the AUS-BDAS approach in the more basic, highly nonlinear Lorenz 1963 convective model. We run observation system simulation experiments in a perfect model setting, and with two types of model error as well: random and systematic. In the different configurations examined, and in a perfect model setting, AUS once again shows better efficiency than other advanced data assimilation schemes. In the present study, we develop an iterative scheme that leads to a significant improvement of the overall assimilation performance with respect also to standard AUS. In particular, it boosts the efficiency of regime’s changes tracking, with a low computational cost. Other data assimilation schemes need estimates of ad hoc parameters, which have to be tuned for the specific model at hand. In Numerical Weather Prediction models, tuning of parameters — and in particular an estimate of the model error covariance matrix — may turn out to be quite difficult. Our proposed approach, instead, may be easier to implement in operational models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is dedicated to the analysis of non-linear pricing in oligopoly. Non-linear pricing is a fairly predominant practice in most real markets, mostly characterized by some amount of competition. The sophistication of pricing practices has increased in the latest decades due to the technological advances that have allowed companies to gather more and more data on consumers preferences. The first essay of the thesis highlights the main characteristics of oligopolistic non-linear pricing. Non-linear pricing is a special case of price discrimination. The theory of price discrimination has to be modified in presence of oligopoly: in particular, a crucial role is played by the competitive externality that implies that product differentiation is closely related to the possibility of discriminating. The essay reviews the theory of competitive non-linear pricing by starting from its foundations, mechanism design under common agency. The different approaches to model non-linear pricing are then reviewed. In particular, the difference between price and quantity competition is highlighted. Finally, the close link between non-linear pricing and the recent developments in the theory of vertical differentiation is explored. The second essay shows how the effects of non-linear pricing are determined by the relationship between the demand and the technological structure of the market. The chapter focuses on a model in which firms supply a homogeneous product in two different sizes. Information about consumers' reservation prices is incomplete and the production technology is characterized by size economies. The model provides insights on the size of the products that one finds in the market. Four equilibrium regions are identified depending on the relative intensity of size economies with respect to consumers' evaluation of the good. Regions for which the product is supplied in a single unit or in several different sizes or in only a very large one. Both the private and social desirability of non-linear pricing varies across different equilibrium regions. The third essay considers the broadband internet market. Non discriminatory issues seem the core of the recent debate on the opportunity or not of regulating the internet. One of the main questions posed is whether the telecom companies, owning the networks constituting the internet, should be allowed to offer quality-contingent contracts to content providers. The aim of this essay is to analyze the issue through a stylized two-sided market model of the web that highlights the effects of such a discrimination over quality, prices and participation to the internet of providers and final users. An overall welfare comparison is proposed, concluding that the final effects of regulation crucially depend on both the technology and preferences of agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a large number of problems the high dimensionality of the search space, the vast number of variables and the economical constrains limit the ability of classical techniques to reach the optimum of a function, known or unknown. In this thesis we investigate the possibility to combine approaches from advanced statistics and optimization algorithms in such a way to better explore the combinatorial search space and to increase the performance of the approaches. To this purpose we propose two methods: (i) Model Based Ant Colony Design and (ii) Naïve Bayes Ant Colony Optimization. We test the performance of the two proposed solutions on a simulation study and we apply the novel techniques on an appplication in the field of Enzyme Engineering and Design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis analyses problems related to the applicability, in business environments, of Process Mining tools and techniques. The first contribution is a presentation of the state of the art of Process Mining and a characterization of companies, in terms of their "process awareness". The work continues identifying circumstance where problems can emerge: data preparation; actual mining; and results interpretation. Other problems are the configuration of parameters by not-expert users and computational complexity. We concentrate on two possible scenarios: "batch" and "on-line" Process Mining. Concerning the batch Process Mining, we first investigated the data preparation problem and we proposed a solution for the identification of the "case-ids" whenever this field is not explicitly indicated. After that, we concentrated on problems at mining time and we propose the generalization of a well-known control-flow discovery algorithm in order to exploit non instantaneous events. The usage of interval-based recording leads to an important improvement of performance. Later on, we report our work on the parameters configuration for not-expert users. We present two approaches to select the "best" parameters configuration: one is completely autonomous; the other requires human interaction to navigate a hierarchy of candidate models. Concerning the data interpretation and results evaluation, we propose two metrics: a model-to-model and a model-to-log. Finally, we present an automatic approach for the extension of a control-flow model with social information, in order to simplify the analysis of these perspectives. The second part of this thesis deals with control-flow discovery algorithms in on-line settings. We propose a formal definition of the problem, and two baseline approaches. The actual mining algorithms proposed are two: the first is the adaptation, to the control-flow discovery problem, of a frequency counting algorithm; the second constitutes a framework of models which can be used for different kinds of streams (stationary versus evolving).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increased incidence of Clostridium difficile infection (CDI) is associated with the emergence of epidemic strains characterised by high genetic diversity. Among the factors that may have a role in CDI there is a family of 29 paralogs, the cell wall proteins (CWPs), which compose the outer layer of the bacterial cell and are likely to be involved in colonisation. Previous studies have shown that 12 of the29 cwp genes are clustered in the same region, named after slpA (cwp1) the slpA locus, whereas the remaining 17 paralogs are distributed throughout the genome. The variability of 14 of these 17 cwp paralogs was determined in 40 C. difficile clinical isolates belonging to six of the currently prevailing PCR ribotypes. Based on sequence conservation, these cwp genes were divided into two groups, one comprising cwp loci having highly conserved sequences in all isolates, and the other 5 loci showing low genetic conservation between isolates of the same PCR ribotype as well as between different PCR ribotypes. Three conserved CWPs, Cwp16, Cwp18 and Cwp25, and two variable ones, Cwp26 and Cwp27, were characterised further by Western blot analysis of total cell extracts or S-layer preparations of the C. difficile clinical isolates. Expression of genetically invariable CWPs is well conserved in all isolates, while genetically variable CWPs are not always expressed at comparable levels even in strains containing identical sequences but belonging to different PCR ribotypes. In addition, we chose to analyse the immune response obtained in a protection experiment, carried out in hamsters, using a protein microarray approach to study the in vivo expression and the immunoreactivity of several surface proteins, including 18 Cwps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basic concepts and definitions relative to Lagrangian Particle Dispersion Models (LPDMs)for the description of turbulent dispersion are introduced. The study focusses on LPDMs that use as input, for the large scale motion, fields produced by Eulerian models, with the small scale motions described by Lagrangian Stochastic Models (LSMs). The data of two different dynamical model have been used: a Large Eddy Simulation (LES) and a General Circulation Model (GCM). After reviewing the small scale closure adopted by the Eulerian model, the development and implementation of appropriate LSMs is outlined. The basic requirement of every LPDM used in this work is its fullfillment of the Well Mixed Condition (WMC). For the dispersion description in the GCM domain, a stochastic model of Markov order 0, consistent with the eddy-viscosity closure of the dynamical model, is implemented. A LSM of Markov order 1, more suitable for shorter timescales, has been implemented for the description of the unresolved motion of the LES fields. Different assumptions on the small scale correlation time are made. Tests of the LSM on GCM fields suggest that the use of an interpolation algorithm able to maintain an analytical consistency between the diffusion coefficient and its derivative is mandatory if the model has to satisfy the WMC. Also a dynamical time step selection scheme based on the diffusion coefficient shape is introduced, and the criteria for the integration step selection are discussed. Absolute and relative dispersion experiments are made with various unresolved motion settings for the LSM on LES data, and the results are compared with laboratory data. The study shows that the unresolved turbulence parameterization has a negligible influence on the absolute dispersion, while it affects the contribution of the relative dispersion and meandering to absolute dispersion, as well as the Lagrangian correlation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The aim of the thesi is to formulate a suitable Item Response Theory (IRT) based model to measure HRQoL (as latent variable) using a mixed responses questionnaire and relaxing the hypothesis of normal distributed latent variable. The new model is a combination of two models already presented in literature, that is, a latent trait model for mixed responses and an IRT model for Skew Normal latent variable. It is developed in a Bayesian framework, a Markov chain Monte Carlo procedure is used to generate samples of the posterior distribution of the parameters of interest. The proposed model is test on a questionnaire composed by 5 discrete items and one continuous to measure HRQoL in children, the EQ-5D-Y questionnaire. A large sample of children collected in the schools was used. In comparison with a model for only discrete responses and a model for mixed responses and normal latent variable, the new model has better performances, in term of deviance information criterion (DIC), chain convergences times and precision of the estimates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During my PhD, starting from the original formulations proposed by Bertrand et al., 2000 and Emolo & Zollo 2005, I developed inversion methods and applied then at different earthquakes. In particular large efforts have been devoted to the study of the model resolution and to the estimation of the model parameter errors. To study the source kinematic characteristics of the Christchurch earthquake we performed a joint inversion of strong-motion, GPS and InSAR data using a non-linear inversion method. Considering the complexity highlighted by superficial deformation data, we adopted a fault model consisting of two partially overlapping segments, with dimensions 15x11 and 7x7 km2, having different faulting styles. This two-fault model allows to better reconstruct the complex shape of the superficial deformation data. The total seismic moment resulting from the joint inversion is 3.0x1025 dyne.cm (Mw = 6.2) with an average rupture velocity of 2.0 km/s. Errors associated with the kinematic model have been estimated of around 20-30 %. The 2009 Aquila sequence was characterized by an intense aftershocks sequence that lasted several months. In this study we applied an inversion method that assumes as data the apparent Source Time Functions (aSTFs), to a Mw 4.0 aftershock of the Aquila sequence. The estimation of aSTFs was obtained using the deconvolution method proposed by Vallée et al., 2004. The inversion results show a heterogeneous slip distribution, characterized by two main slip patches located NW of the hypocenter, and a variable rupture velocity distribution (mean value of 2.5 km/s), showing a rupture front acceleration in between the two high slip zones. Errors of about 20% characterize the final estimated parameters.