3 resultados para Turbulence-closure
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The present work is devoted to the assessment of the energy fluxes physics in the space of scales and physical space of wall-turbulent flows. The generalized Kolmogorov equation will be applied to DNS data of a turbulent channel flow in order to describe the energy fluxes paths from production to dissipation in the augmented space of wall-turbulent flows. This multidimensional description will be shown to be crucial to understand the formation and sustainment of the turbulent fluctuations fed by the energy fluxes coming from the near-wall production region. An unexpected behavior of the energy fluxes comes out from this analysis consisting of spiral-like paths in the combined physical/scale space where the controversial reverse energy cascade plays a central role. The observed behavior conflicts with the classical notion of the Richardson/Kolmogorov energy cascade and may have strong repercussions on both theoretical and modeling approaches to wall-turbulence. To this aim a new relation stating the leading physical processes governing the energy transfer in wall-turbulence is suggested and shown able to capture most of the rich dynamics of the shear dominated region of the flow. Two dynamical processes are identified as driving mechanisms for the fluxes, one in the near wall region and a second one further away from the wall. The former, stronger one is related to the dynamics involved in the near-wall turbulence regeneration cycle. The second suggests an outer self-sustaining mechanism which is asymptotically expected to take place in the log-layer and could explain the debated mixed inner/outer scaling of the near-wall statistics. The same approach is applied for the first time to a filtered velocity field. A generalized Kolmogorov equation specialized for filtered velocity field is derived and discussed. The results will show what effects the subgrid scales have on the resolved motion in both physical and scale space, singling out the prominent role of the filter length compared to the cross-over scale between production dominated scales and inertial range, lc, and the reverse energy cascade region lb. The systematic characterization of the resolved and subgrid physics as function of the filter scale and of the wall-distance will be shown instrumental for a correct use of LES models in the simulation of wall turbulent flows. Taking inspiration from the new relation for the energy transfer in wall turbulence, a new class of LES models will be also proposed. Finally, the generalized Kolmogorov equation specialized for filtered velocity fields will be shown to be an helpful statistical tool for the assessment of LES models and for the development of new ones. As example, some classical purely dissipative eddy viscosity models are analyzed via an a priori procedure.
Resumo:
Basic concepts and definitions relative to Lagrangian Particle Dispersion Models (LPDMs)for the description of turbulent dispersion are introduced. The study focusses on LPDMs that use as input, for the large scale motion, fields produced by Eulerian models, with the small scale motions described by Lagrangian Stochastic Models (LSMs). The data of two different dynamical model have been used: a Large Eddy Simulation (LES) and a General Circulation Model (GCM). After reviewing the small scale closure adopted by the Eulerian model, the development and implementation of appropriate LSMs is outlined. The basic requirement of every LPDM used in this work is its fullfillment of the Well Mixed Condition (WMC). For the dispersion description in the GCM domain, a stochastic model of Markov order 0, consistent with the eddy-viscosity closure of the dynamical model, is implemented. A LSM of Markov order 1, more suitable for shorter timescales, has been implemented for the description of the unresolved motion of the LES fields. Different assumptions on the small scale correlation time are made. Tests of the LSM on GCM fields suggest that the use of an interpolation algorithm able to maintain an analytical consistency between the diffusion coefficient and its derivative is mandatory if the model has to satisfy the WMC. Also a dynamical time step selection scheme based on the diffusion coefficient shape is introduced, and the criteria for the integration step selection are discussed. Absolute and relative dispersion experiments are made with various unresolved motion settings for the LSM on LES data, and the results are compared with laboratory data. The study shows that the unresolved turbulence parameterization has a negligible influence on the absolute dispersion, while it affects the contribution of the relative dispersion and meandering to absolute dispersion, as well as the Lagrangian correlation.