20 resultados para Tuneable micro- and nano-periodic structures
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.
Resumo:
A general description of the work presented in this thesis can be divided into three areas of interest: micropore fabrication, nanopore modification, and their applications. The first part of the thesis is related to the novel, reliable, cost-effective, potable, mass-productive, robust, and ease of use micropore flowcell that works based on the RPS technique. Based on our first goal, which was finding an alternate materials and processes that would shorten production times while lowering costs and improving signal quality, the polyimide film was used as a substrate to create precise pores by femtosecond laser, and the resulting current blockades of different sizes of the nanoparticles were recorded. Based on the results, the device can detecting nano-sized particles by changing the current level. The experimental and theoretical investigation, scanning electron microscopy, and focus ion beam were performed to explain the micropore's performance. The second goal was design and fabrication of a leak-free, easy-to-assemble, and portable polymethyl methacrylate flowcell for nanopore experiments. Here, ion current rectification was studied in our nanodevice. We showed a self-assembly-based, controllable, and monitorable in situ Poly(l-lysine)- g-poly(ethylene glycol) coating method under voltage-driven electrolyte flow and electrostatic interaction between nanopore walls and PLL backbones. Using designed nanopore flowcell and in situ monolayer PLL-g-PEG functionalized 20±4 nm SiN nanopores, we observed non-sticky α-1 anti-trypsin protein translocation. additionally, we could show the enhancement of translocation events through this non-sticky nanopore, and also, estimate the volume of the translocated protein. In this study, by comparing the AAT protein translocation results from functionalized and non-functionalized nanopore we demonstrated the 105 times dwell time reduction (31-0.59ms), 25% amplitude enhancement (0.24-0.3 nA), and 15 times event’s number increase (1-15events/s) after functionalization in 1×PBS at physiological pH. Also, the AAT protein volume was measured, close to the calculated AAT protein hydrodynamic volume and previous reports.
Resumo:
Graphene and graphenic derivatives have rapidly emerged as an extremely promising system for electronic, optical, thermal, and electromechanical applications. Several approaches have been developed to produce these materials (i.e. scotch tape, CVD, chemical and solvent exfoliation). In this work we report a chemical approach to produce graphene by reducing graphene oxide (GO) via thermal or electrical methods. A morphological and electrical characterization of these systems has been performed using different techniques such as SPM, SEM, TEM, Raman and XPS. Moreover, we studied the interaction between graphene derivates and organic molecules focusing on the following aspects: - improvement of optical contrast of graphene on different substrates for rapid monolayer identification1 - supramolecular interaction with organic molecules (i.e. thiophene, pyrene etc.)4 - covalent functionalization with optically active molecules2 - preparation and characterization of organic/graphene Field Effect Transistors3-5 Graphene chemistry can potentially allow seamless integration of graphene technology in organic electronics devices to improve device performance and develop new applications for graphene-based materials. [1] E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. Samorì, and V. Palermo, J. Am. Chem. Soc., 2009, 131, 15576. [2] M. Melucci, E. Treossi, L. Ortolani, G. Giambastiani, V. Morandi, P. Klar, C. Casiraghi, P. Samorì, and V. Palermo, J. Mater. Chem., 2010, 20, 9052. [3] J.M. Mativetsky, E. Treossi, E. Orgiu, M. Melucci, G.P. Veronese, P. Samorì, and V. Palermo, J. Am. Chem. Soc., 2010, 132, 14130. [4] A. Liscio, G.P. Veronese, E. Treossi, F. Suriano, F. Rossella, V. Bellani, R. Rizzoli, P. Samorì and V. Palermo, J. Mater. Chem., 2011, 21, 2924. [5] J.M. Mativetsky, A. Liscio, E. Treossi, E. Orgiu, A. Zanelli, P. Samorì , V. Palermo, J. Am. Chem. Soc., 2011, 133, 14320
Resumo:
Startups’ contributions on economic growth have been widely realized. However, the funding gap is often a problem limiting startups’ development. To some extent, VC can be a means to solve this problem. VC is one of the optimal financial intermediaries for startups. Two streams of VC studies are focused in this dissertation: the criteria used by venture capitalists to evaluate startups and the effect of VC on innovation. First, although many criteria have been analyzed, the empirical assessment of the effect of startup reputation on VC funding has not been investigated. However, reputation is usually positively related with firm performance, which may affect VC funding. By analyzing reputation from the generalized visibility dimension and the generalized favorability dimension using a sample of 200 startups founded from 1995 operating in the UK MNT sector, we show that both the two dimensions of reputation have positive influence on the likelihood of receiving VC funding. We also find that management team heterogeneity positively influence the likelihood of receiving VC funding. Second, studies investigating the effect of venture capital on innovation have frequently resorted to patent data. However, innovation is a process leading from invention to successful commercialization, and while patents capture the upstream side of innovative performance, they poorly describe its downstream one. By reflecting the introduction of new products or services trademarks can complete the picture, but empirical studies on trademarking in startups are rare. Analyzing a sample of 192 startups founded from 1996 operating in the UK MNT sector, we find that VC funding has positive effect on the propensity to register trademarks, as well as on the number and breadth of trademarks.
Resumo:
This thesis analysis micro and macro aspect of applied fiscal policy issues. The first chapter investigates the extent to which local budget spending composition reacts to fiscal rules variations. I consider the budget of Italian municipalities and exploit specific changes in the Domestic Stability Pact’s rules, to perform a difference-in-discontinuities analysis. The results show that imposing a cap on the total amount of consumption and investment is not as binding as two caps, one for consumption and a different one for investment. More specifically, consumption is triggered by changes in wages and services spending, while investment relies on infrastructure movements. In addition, there is evidence that when an increase in investment is achieved, there is also a higher budget deficit level. The second chapter intends to analyze the extent to which fiscal policy shocks are able to affect macrovariables during business cycle fluctuations, differentiating among three intervention channels: public taxation, consumption and investment. The econometric methodology implemented is a Panel Vector Autoregressive model with a structural characterization. The results show that fiscal shocks have different multipliers in relation to expansion or contraction periods: output does not react during good times while there are significant effects in bad ones. The third chapter evaluates the effects of fiscal policy announcements by the Italian government on the long-term sovereign bond spread of Italy relative to Germany. After collecting data on relevant fiscal policy announcements, we perform an econometric comparative analysis between the three cabinets that followed one another during the period 2009-2013. The results suggest that only fiscal policy announcements made by members of Monti’s cabinet have been effective in influencing significantly the Italian spread in the expected direction, revealing a remarkable credibility gap between Berlusconi’s and Letta’s governments with respect to Monti’s administration.
Resumo:
The role of non-neuronal brain cells, called astrocytes, is emerging as crucial in brain function and dysfunction, encompassing the neurocentric concept that was envisioning glia as passive components. Ion and water channels and calcium signalling, expressed in functional micro and nano domains, underpin astrocytes’ homeostatic function, synaptic transmission, neurovascular coupling acting either locally and globally. In this respect, a major issue arises on the mechanism through which astrocytes can control processes across scales. Finally, astrocytes can sense and react to extracellular stimuli such as chemical, physical, mechanical, electrical, photonic ones at the nanoscale. Given their emerging importance and their sensing properties, my PhD research program had the general goal to validate nanomaterials, interfaces and devices approaches that were developed ad-hoc to study astrocytes. The results achieved are reported in the form of collection of papers. Specifically, we demonstrated that i) electrospun nanofibers made of polycaprolactone and polyaniline conductive composites can shape primary astrocytes’ morphology, without affecting their function ii) gold coated silicon nanowires devices enable extracellular recording of unprecedented slow wave in primary differentiated astrocytes iii) colloidal hydrotalcites films allow to get insight in cell volume regulation process in differentiated astrocytes and to describe novel cytoskeletal actin dynamics iv) gold nanoclusters represent nanoprobe to trigger astrocytes structure and function v) nanopillars of photoexcitable organic polymer are potential tool to achieve nanoscale photostimulation of astrocytes. The results were achieved by a multidisciplinary team working with national and international collaborators that are listed and acknowledged in the text. Collectively, the results showed that astrocytes represent a novel opportunity and target for Nanoscience, and that Nanoglial interface might help to unveil clues on brain function or represent novel therapeutic approach to treat brain dysfunctions.
Resumo:
In the search to understand the interaction between cells and their underlying substrates, life sciences are beginning to incorporate micro and nano-technology based tools to probe, measure and improve cellular behavior. In this frame, patterned surfaces provide a platform for highly defined cellular interactions and, in perspective, they offer unique advantages for artificial implants. For these reasons, functionalized materials have recently become a central topic in tissue engineering. Nanotechnology, with its rich toolbox of techniques, can be the leading actor in the materials patterning field. Laser assisted methods, conventional and un-conventional lithography and other patterning techniques, allow the fabrication of functional supports with tunable properties, either physically, or topographically and chemically. Among them, soft lithography provides an effective (and low cost) strategy for manufacturing micro and nanostructures. The main focus of this work is the use of different fabrication approaches aiming at a precise control of cell behavior, adhesion, proliferation and differentiation, through chemically and spatially designed surfaces.
Resumo:
Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.
Resumo:
Marine biomineralizing organisms provide a fundamental link between biology and environment. Calcified structure are important archives that can provide us main means of understanding organism adaptation, habits, environmental characteristics, and to look back in time and explore the past climate and their evolutionary history. In fact, biomineralized structures retain an unparalleled record of current and past ocean conditions through the investigation of their microchemistry and isotopes. This thesis considers aspects of two different biomineralization systems: fish otolith and coral skeletons at macro-, micro- and nanoscale, with the aim to understand how their morphology, structural characteristics and compositions can provide information of their functionality, and the environmental, behavioural, and evolutionary context in which organisms are framed. To this end, I applied a multidisciplinary approach in the scope to investigate calcified structures as “information recorders” and as models to study the phenotypic plasticity.
Resumo:
In Performance-Based Earthquake Engineering (PBEE), evaluating the seismic performance (or seismic risk) of a structure at a designed site has gained major attention, especially in the past decade. One of the objectives in PBEE is to quantify the seismic reliability of a structure (due to the future random earthquakes) at a site. For that purpose, Probabilistic Seismic Demand Analysis (PSDA) is utilized as a tool to estimate the Mean Annual Frequency (MAF) of exceeding a specified value of a structural Engineering Demand Parameter (EDP). This dissertation focuses mainly on applying an average of a certain number of spectral acceleration ordinates in a certain interval of periods, Sa,avg (T1,…,Tn), as scalar ground motion Intensity Measure (IM) when assessing the seismic performance of inelastic structures. Since the interval of periods where computing Sa,avg is related to the more or less influence of higher vibration modes on the inelastic response, it is appropriate to speak about improved IMs. The results using these improved IMs are compared with a conventional elastic-based scalar IMs (e.g., pseudo spectral acceleration, Sa ( T(¹)), or peak ground acceleration, PGA) and the advanced inelastic-based scalar IM (i.e., inelastic spectral displacement, Sdi). The advantages of applying improved IMs are: (i ) "computability" of the seismic hazard according to traditional Probabilistic Seismic Hazard Analysis (PSHA), because ground motion prediction models are already available for Sa (Ti), and hence it is possibile to employ existing models to assess hazard in terms of Sa,avg, and (ii ) "efficiency" or smaller variability of structural response, which was minimized to assess the optimal range to compute Sa,avg. More work is needed to assess also "sufficiency" and "scaling robustness" desirable properties, which are disregarded in this dissertation. However, for ordinary records (i.e., with no pulse like effects), using the improved IMs is found to be more accurate than using the elastic- and inelastic-based IMs. For structural demands that are dominated by the first mode of vibration, using Sa,avg can be negligible relative to the conventionally-used Sa (T(¹)) and the advanced Sdi. For structural demands with sign.cant higher-mode contribution, an improved scalar IM that incorporates higher modes needs to be utilized. In order to fully understand the influence of the IM on the seismis risk, a simplified closed-form expression for the probability of exceeding a limit state capacity was chosen as a reliability measure under seismic excitations and implemented for Reinforced Concrete (RC) frame structures. This closed-form expression is partuclarly useful for seismic assessment and design of structures, taking into account the uncertainty in the generic variables, structural "demand" and "capacity" as well as the uncertainty in seismic excitations. The assumed framework employs nonlinear Incremental Dynamic Analysis (IDA) procedures in order to estimate variability in the response of the structure (demand) to seismic excitations, conditioned to IM. The estimation of the seismic risk using the simplified closed-form expression is affected by IM, because the final seismic risk is not constant, but with the same order of magnitude. Possible reasons concern the non-linear model assumed, or the insufficiency of the selected IM. Since it is impossibile to state what is the "real" probability of exceeding a limit state looking the total risk, the only way is represented by the optimization of the desirable properties of an IM.
Computer simulation of ordering and dynamics in liquid crystals in the bulk and close to the surface
Resumo:
The aim of this PhD thesis is to investigate the orientational and dynamical properties of liquid crystalline systems, at molecular level and using atomistic computer simulations, to reach a better understanding of material behavior from a microscopic point view. In perspective this should allow to clarify the relation between the micro and macroscopic properties with the objective of predicting or confirming experimental results on these systems. In this context, we developed four different lines of work in the thesis. The first one concerns the orientational order and alignment mechanism of rigid solutes of small dimensions dissolved in a nematic phase formed by the 4-pentyl,4 cyanobiphenyl (5CB) nematic liquid crystal. The orientational distribution of solutes have been obtained with Molecular Dynamics Simulation (MD) and have been compared with experimental data reported in literature. we have also verified the agreement between order parameters and dipolar coupling values measured in NMR experiments. The MD determined effective orientational potentials have been compared with the predictions of MaierSaupe and Surface tensor models. The second line concerns the development of a correct parametrization able to reproduce the phase transition properties of a prototype of the oligothiophene semiconductor family: sexithiophene (T6). T6 forms two crystalline polymorphs largely studied, and possesses liquid crystalline phases still not well characterized, From simulations we detected a phase transition from crystal to liquid crystal at about 580 K, in agreement with available experiments, and in particular we found two LC phases, smectic and nematic. The crystalsmectic transition is associated to a relevant density variation and to strong conformational changes of T6, namely the molecules in the liquid crystal phase easily assume a bent shape, deviating from the planar structure typical of the crystal. The third line explores a new approach for calculating the viscosity in a nematic through a virtual exper- iment resembling the classical falling sphere experiment. The falling sphere is replaced by an hydrogenated silicon nanoparticle of spherical shape suspended in 5CB, and gravity effects are replaced by a constant force applied to the nanoparticle in a selected direction. Once the nanoparticle reaches a constant velocity, the viscosity of the medium can be evaluated using Stokes' law. With this method we successfully reproduced experimental viscosities and viscosity anisotropy for the solvent 5CB. The last line deals with the study of order induction on nematic molecules by an hydrogenated silicon surface. Gaining predicting power for the anchoring behavior of liquid crystals at surfaces will be a very desirable capability, as many properties related to devices depend on molecular organization close to surfaces. Here we studied, by means of atomistic MD simulations, the flat interface between an hydrogenated (001) silicon surface in contact with a sample of 5CB molecules. We found a planar anchoring of the first layers of 5CB where surface interactions are dominating with respect to the mesogen intermolecular interactions. We also analyzed the interface 5CBvacuum, finding a homeotropic orientation of the nematic at this interface.
Resumo:
The present work tries to display a comprehensive and comparative study of the different legal and regulatory problems involved in international securitization transactions. First, an introduction to securitization is provided, with the basic elements of the transaction, followed by the different varieties of it, including dynamic securitization and synthetic securitization structures. Together with this introduction to the intricacies of the structure, a insight into the influence of securitization in the financial and economic crisis of 2007-2009 is provided too; as well as an overview of the process of regulatory competition and cooperation that constitutes the framework for the international aspects of securitization. The next Chapter focuses on the aspects that constitute the foundations of structured finance: the inception of the vehicle, and the transfer of risks associated to the securitized assets, with particular emphasis on the validity of those elements, and how a securitization transaction could be threatened at its root. In this sense, special importance is given to the validity of the trust as an instrument of finance, to the assignment of future receivables or receivables in block, and to the importance of formalities for the validity of corporations, trusts, assignments, etc., and the interaction of such formalities contained in general corporate, trust and assignment law with those contemplated under specific securitization regulations. Then, the next Chapter (III) focuses on creditor protection aspects. As such, we provide some insights on the debate on the capital structure of the firm, and its inadequacy to assess the financial soundness problems inherent to securitization. Then, we proceed to analyze the importance of rules on creditor protection in the context of securitization. The corollary is in the rules in case of insolvency. In this sense, we divide the cases where a party involved in the transaction goes bankrupt, from those where the transaction itself collapses. Finally, we focus on the scenario where a substance over form analysis may compromise some of the elements of the structure (notably the limited liability of the sponsor, and/or the transfer of assets) by means of veil piercing, substantive consolidation, or recharacterization theories. Once these elements have been covered, the next Chapters focus on the regulatory aspects involved in the transaction. Chapter IV is more referred to “market” regulations, i.e. those concerned with information disclosure and other rules (appointment of the indenture trustee, and elaboration of a rating by a rating agency) concerning the offering of asset-backed securities to the public. Chapter V, on the other hand, focuses on “prudential” regulation of the entity entrusted with securitizing assets (the so-called Special Purpose vehicle), and other entities involved in the process. Regarding the SPV, a reference is made to licensing requirements, restriction of activities and governance structures to prevent abuses. Regarding the sponsor of the transaction, a focus is made on provisions on sound originating practices, and the servicing function. Finally, we study accounting and banking regulations, including the Basel I and Basel II Frameworks, which determine the consolidation of the SPV, and the de-recognition of the securitized asset from the originating company’s balance-sheet, as well as the posterior treatment of those assets, in particular by banks. Chapters VI-IX are concerned with liability matters. Chapter VI is an introduction to the different sources of liability. Chapter VII focuses on the liability by the SPV and its management for the information supplied to investors, the management of the asset pool, and the breach of loyalty (or fiduciary) duties. Chapter VIII rather refers to the liability of the originator as a result of such information and statements, but also as a result of inadequate and reckless originating or servicing practices. Chapter IX finally focuses on third parties entrusted with the soundness of the transaction towards the market, the so-called gatekeepers. In this respect, we make special emphasis on the liability of indenture trustees, underwriters and rating agencies. Chapters X and XI focus on the international aspects of securitization. Chapter X contains a conflicts of laws analysis of the different aspects of structured finance. In this respect, a study is made of the laws applicable to the vehicle, to the transfer of risks (either by assignment or by means of derivatives contracts), to liability issues; and a study is also made of the competent jurisdiction (and applicable law) in bankruptcy cases; as well as in cases where a substance-over-form is performed. Then, special attention is also devoted to the role of financial and securities regulations; as well as to their territorial limits, and extraterritoriality problems involved. Chapter XI supplements the prior Chapter, for it analyzes the limits to the States’ exercise of regulatory power by the personal and “market” freedoms included in the US Constitution or the EU Treaties. A reference is also made to the (still insufficient) rules from the WTO Framework, and their significance to the States’ recognition and regulation of securitization transactions.
Resumo:
Nano(bio)science and nano(bio)technology play a growing and tremendous interest both on academic and industrial aspects. They are undergoing rapid developments on many fronts such as genomics, proteomics, system biology, and medical applications. However, the lack of characterization tools for nano(bio)systems is currently considered as a major limiting factor to the final establishment of nano(bio)technologies. Flow Field-Flow Fractionation (FlFFF) is a separation technique that is definitely emerging in the bioanalytical field, and the number of applications on nano(bio)analytes such as high molar-mass proteins and protein complexes, sub-cellular units, viruses, and functionalized nanoparticles is constantly increasing. This can be ascribed to the intrinsic advantages of FlFFF for the separation of nano(bio)analytes. FlFFF is ideally suited to separate particles over a broad size range (1 nm-1 μm) according to their hydrodynamic radius (rh). The fractionation is carried out in an empty channel by a flow stream of a mobile phase of any composition. For these reasons, fractionation is developed without surface interaction of the analyte with packing or gel media, and there is no stationary phase able to induce mechanical or shear stress on nanosized analytes, which are for these reasons kept in their native state. Characterization of nano(bio)analytes is made possible after fractionation by interfacing the FlFFF system with detection techniques for morphological, optical or mass characterization. For instance, FlFFF coupling with multi-angle light scattering (MALS) detection allows for absolute molecular weight and size determination, and mass spectrometry has made FlFFF enter the field of proteomics. Potentialities of FlFFF couplings with multi-detection systems are discussed in the first section of this dissertation. The second and the third sections are dedicated to new methods that have been developed for the analysis and characterization of different samples of interest in the fields of diagnostics, pharmaceutics, and nanomedicine. The second section focuses on biological samples such as protein complexes and protein aggregates. In particular it focuses on FlFFF methods developed to give new insights into: a) chemical composition and morphological features of blood serum lipoprotein classes, b) time-dependent aggregation pattern of the amyloid protein Aβ1-42, and c) aggregation state of antibody therapeutics in their formulation buffers. The third section is dedicated to the analysis and characterization of structured nanoparticles designed for nanomedicine applications. The discussed results indicate that FlFFF with on-line MALS and fluorescence detection (FD) may become the unparallel methodology for the analysis and characterization of new, structured, fluorescent nanomaterials.
Resumo:
The Northern Apennines (NA) chain is the expression of the active plate margin between Europe and Adria. Given the low convergence rates and the moderate seismic activity, ambiguities still occur in defining a seismotectonic framework and many different scenarios have been proposed for the mountain front evolution. Differently from older models that indicate the mountain front as an active thrust at the surface, a recently proposed scenario describes the latter as the frontal limb of a long-wavelength fold (> 150 km) formed by a thrust fault tipped around 17 km at depth, and considered as the active subduction boundary. East of Bologna, this frontal limb is remarkably very straight and its surface is riddled with small, but pervasive high- angle normal faults. However, west of Bologna, some recesses are visible along strike of the mountain front: these perturbations seem due to the presence of shorter wavelength (15 to 25 km along strike) structures showing both NE and NW-vergence. The Pleistocene activity of these structures was already suggested, but not quantitative reconstructions are available in literature. This research investigates the tectonic geomorphology of the NA mountain front with the specific aim to quantify active deformations and infer possible deep causes of both short- and long-wavelength structures. This study documents the presence of a network of active extensional faults, in the foothills south and east of Bologna. For these structures, the strain rate has been measured to find a constant throw-to-length relationship and the slip rates have been compared with measured rates of erosion. Fluvial geomorphology and quantitative analysis of the topography document in detail the active tectonics of two growing domal structures (Castelvetro - Vignola foothills and the Ghiardo plateau) embedded in the mountain front west of Bologna. Here, tilting and river incision rates (interpreted as that long-term uplift rates) have been measured respectively at the mountain front and in the Enza and Panaro valleys, using a well defined stratigraphy of Pleistocene to Holocene river terraces and alluvial fan deposits as growth strata, and seismic reflection profiles relationships. The geometry and uplift rates of the anticlines constrain a simple trishear fault propagation folding model that inverts for blind thrust ramp depth, dip, and slip. Topographic swath profiles and the steepness index of river longitudinal profiles that traverse the anti- clines are consistent with stratigraphy, structures, aquifer geometry, and seismic reflection profiles. Available focal mechanisms of earthquakes with magnitude between Mw 4.1 to 5.4, obtained from a dataset of the instrumental seismicity for the last 30 years, evidence a clear vertical separation at around 15 km between shallow extensional and deeper compressional hypocenters along the mountain front and adjacent foothills. In summary, the studied anticlines appear to grow at rates slower than the growing rate of the longer- wavelength structure that defines the mountain front of the NA. The domal structures show evidences of NW-verging deformation and reactivations of older (late Neogene) thrusts. The reconstructed river incision rates together with rates coming from several other rivers along a 250 km wide stretch of the NA mountain front and recently available in the literature, all indicate a general increase from Middle to Late Pleistocene. This suggests focusing of deformation along a deep structure, as confirmed by the deep compressional seismicity. The maximum rate is however not constant along the mountain front, but varies from 0.2 mm/yr in the west to more than 2.2 mm/yr in the eastern sector, suggesting a similar (eastward-increasing) trend of the apenninic subduction.
Resumo:
Photovoltaic (PV) conversion is the direct production of electrical energy from sun without involving the emission of polluting substances. In order to be competitive with other energy sources, cost of the PV technology must be reduced ensuring adequate conversion efficiencies. These goals have motivated the interest of researchers in investigating advanced designs of crystalline silicon solar (c-Si) cells. Since lowering the cost of PV devices involves the reduction of the volume of semiconductor, an effective light trapping strategy aimed at increasing the photon absorption is required. Modeling of solar cells by electro-optical numerical simulation is helpful to predict the performance of future generations devices exhibiting advanced light-trapping schemes and to provide new and more specific guidelines to industry. The approaches to optical simulation commonly adopted for c-Si solar cells may lead to inaccurate results in case of thin film and nano-stuctured solar cells. On the other hand, rigorous solvers of Maxwell equations are really cpu- and memory-intensive. Recently, in optical simulation of solar cells, the RCWA method has gained relevance, providing a good trade-off between accuracy and computational resources requirement. This thesis is a contribution to the numerical simulation of advanced silicon solar cells by means of a state-of-the-art numerical 2-D/3-D device simulator, that has been successfully applied to the simulation of selective emitter and the rear point contact solar cells, for which the multi-dimensionality of the transport model is required in order to properly account for all physical competing mechanisms. In the second part of the thesis, the optical problems is discussed. Two novel and computationally efficient RCWA implementations for 2-D simulation domains as well as a third RCWA for 3-D structures based on an eigenvalues calculation approach have been presented. The proposed simulators have been validated in terms of accuracy, numerical convergence, computation time and correctness of results.