8 resultados para Tumor antigens
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Dendritic Cells (DCs) derived from human blood monocytes that have been nurtured in GM-CSF and IL-4, followed by maturation in a monocyte-conditioned medium, are the most potent APCs known. These DCs have many features of primary DCs, including the expression of molecules that enhance antigen capture and selective receptors that guide DCs to and from several sites in the body, where they elicit the T cell mediated immune response. For these features, immature DCs (iDC) loaded with tumor antigen and matured (mDC) with a standard cytokine cocktail, are used for therapeutic vaccination in clinical trials of different cancers. However, the efficacy of DCs in the development of immunocompetence is critically influenced by the type (whole lysate, proteins, peptides, mRNA), the amount and the time of exposure of the tumor antigens used for loading in the presentation phase. The aim of the present study was to create instruments to acquire more information about DC antigen uptake and presentation mechanisms to improve the clinical efficacy of DCbased vaccine. In particular, two different tumor antigen were studied: the monoclonal immunoglobulin (IgG or IgA) produced in Myeloma Multiple, and the whole lysate obtained from melanoma tissues. These proteins were conjugated with fluorescent probe (FITC) to evaluate the kinetic of tumor antigen capturing process and its localization into DCs, by cytofluorimetric and fluorescence microscopy analysis, respectively. iDC pulsed with 100μg of IgG-FITC/106 cells were monitored from 2 to 22 hours after loading. By the cytofluorimetric analysis it was observed that the monoclonal antibody was completely captured after 2 hours from pulsing, and was decreased into mDC in 5 hours after maturation stimulus. To monitor the lysate uptake, iDC were pulsed with 80μg of tumor lysate/106 cells, then were monitored in the 2h to 22 hours interval time after loading. Then, to reveal difference between increasing lysate concentration, iDC were loaded with 20-40-80-100-200-400μg of tumor lysate/106 cells and monitored at 2-4-8-13h from pulsing. By the cytofluorimetric analysis, it was observed that, the 20-40-80-100μg uptake, after 8 hours loading was completed reaching a plateau phase. For 200 and 400μg the mean fluorescence of cells increased until 13h from pulsing. The lysate localization into iDC was evaluated with conventional and confocal fluorescence microscopy analysis. In the 2h to 8h time interval from loading an intensive and diffuse fluorescence was observed within the cytoplasmic compartment. Moreover, after 8h, the lysate fluorescence appeared to be organized in a restricted cloudy-shaded area with a typical polarized aspect. In addition, small fluorescent spots clearly appeared with an increment in the number and fluorescence intensity. The nature of these spot-like formations and cloudy area is now being investigated detecting the colocalization of the fluorescence lysate and specific markers for lysosomes, autophagosomes, endoplasmic reticulum and MHCII positive vesicles.
Resumo:
This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.
Resumo:
Background and aims: Sorafenib is the reference therapy for advanced Hepatocellular Carcinoma (HCC). No method exists to predict in the very early period subsequent individual response. Starting from the clinical experience in humans that subcutaneous metastases may rapidly change consistency under sorafenib and that elastosonography a new ultrasound based technique allows assessment of tissue stiffness, we investigated the role of elastonography in the very early prediction of tumor response to sorafenib in a HCC animal model. Methods: HCC (Huh7 cells) subcutaneous xenografting in mice was utilized. Mice were randomized to vehicle or treatment with sorafenib when tumor size was 5-10 mm. Elastosonography (Mylab 70XVG, Esaote, Genova, Italy) of the whole tumor mass on a sagittal plane with a 10 MHz linear transducer was performed at different time points from treatment start (day 0, +2, +4, +7 and +14) until mice were sacrified (day +14), with the operator blind to treatment. In order to overcome variability in absolute elasticity measurement when assessing changes over time, values were expressed in arbitrary units as relative stiffness of the tumor tissue in comparison to the stiffness of a standard reference stand-off pad lying on the skin over the tumor. Results: Sor-treated mice showed a smaller tumor size increase at day +14 in comparison to vehicle-treated (tumor volume increase +192.76% vs +747.56%, p=0.06). Among Sor-treated tumors, 6 mice showed a better response to treatment than the other 4 (increase in volume +177% vs +553%, p=0.011). At day +2, median tumor elasticity increased in Sor-treated group (+6.69%, range –30.17-+58.51%), while decreased in the vehicle group (-3.19%, range –53.32-+37.94%) leading to a significant difference in absolute values (p=0.034). From this time point onward, elasticity decreased in both groups, with similar speed over time, not being statistically different anymore. In Sor-treated mice all 6 best responders at day 14 showed an increase in elasticity at day +2 (ranging from +3.30% to +58.51%) in comparison to baseline, whereas 3 of the 4 poorer responders showed a decrease. Interestingly, these 3 tumours showed elasticity values higher than responder tumours at day 0. Conclusions: Elastosonography appears a promising non-invasive new technique for the early prediction of HCC tumor response to sorafenib. Indeed, we proved that responder tumours are characterized by an early increase in elasticity. The possibility to distinguish a priori between responders and non responders based on the higher elasticity of the latter needs to be validated in ad-hoc experiments as well as a confirmation of our results in humans is warranted.
Resumo:
Kidney transplantation is the best treatment option for the restoration of excretory and endocrine kidney function in patients with end-stage renal disease. The success of the transplant is linked to the genetic compatibility between donor and recipient, and upon progress in surgery and immunosuppressive therapy. Numerous studies have established the importance of innate immunity in transplantation tolerance, in particular natural killer (NK) cells represent a population of cells involved in defense against infectious agents and tumor cells. NK cells express on their surface the Killer-cell Immunoglobulin-like Receptors (KIR) which, by recognizing and binding to MHC class I antigens, prevent the killing of autologous cells. In solid organ transplantation context, and in particular the kidney, recent studies show some correlation between the incompatibility KIR / HLA and outcome of transplantation so as to represent an interesting perspective, especially as regards setting of immunosuppressive therapy. The purpose of this study was therefore to assess whether the incompatibility between recipient KIR receptors and HLA class I ligands of the donor could be a useful predictor in order to improve the survival of the transplanted kidney and also to select patients who might benefit of a reduced regimen. One hundred and thirteen renal transplant patients from 1999 to 2005 were enrolled. Genomic DNA was extracted for each of them and their donors and genotyping of HLA A, B, C and 14 KIR genes was carried out. Data analysis was conducted on two case-control studies: one aimed at assessing the outcome of acute rejection and the other to assess the long term transplant outcome. The results showed that two genes, KIR2DS1 and KIR3DS1, are associated with the development of acute rejection (p = 0.02 and p = 0.05, respectively). The presence of the KIR2DS3 gene is associated with a better performance of serum creatinine and glomerular filtration rate (MDRD) over time (4 and 5 years after transplantation, p <0.05), while in the presence of ligand, the serum creatinine and MDRD trend seems to get worse in the long term. The analysis performed on the population, according to whether there was deterioration of renal function or not in the long term, showed that the absence of the KIR2DL1 gene is strongly associated with an increase of 20% of the creatinine value at 5 years, with a relative risk to having a greater creatinine level than the median 5-year equal to 2.7 95% (95% CI: 1.7788 - 2.6631). Finally, the presence of a kidney resulting negative for HLA-A3 / A11, compared to a positive result, in patients with KIR3DL2, showed a relative risk of having a serum creatinine above the median at 5 years after transplantation of 0.6609 (95% CI: 0.4529 -0.9643), suggesting a protective effect given to the absence of this ligand.
Resumo:
Tumor is a lesion that may be formed by an abnormal growth of neoplastic cells. Many factors increase the risk of cancer and different targets are involved in tumor progression. Within this thesis, we have addressed two different biological targets, independently connected with tumor formation, e.g. Hsp90 and androgen receptor. The ATP-dependent chaperone Hsp90 is responsible for the conformational maturation and the renaturation of proteins. “Client” proteins are associated with the cancer hallmarks, as cell proliferation and tumor progression. Consequently, Hsp90 has evolved into promising anticancer target. Over the past decade, radicicol has been identified as potential anticancer agent targeting Hsp90, but it is not active in vivo. With that aim of obtaining radicicol-related derivatives, we developed the design and synthesis of new chalcones analogs. Chalcones, which are abundant in edible plants, own a diverse array of pharmacological activities and are considered a versatile scaffold for drug design. Antiproliferative assays and western blot analysis on the new compounds showed that some of those display an interesting cytotoxic effect and the ability to modulate Hsp90 client proteins expression. Androgen Receptor (AR) hypersensitivity plays crucial role in prostate cancer, which progression is stimulated by androgens. The therapy consists in a combination of surgical or chemical castration, along with antiandrogens treatment. Casodex® (bicalutamide), is the most widespread antiandrogen used in clinic. However, hormonal therapy is time-limited since many patients develop resistance. Commercially available antiandrogens show a common scaffold, e.g. two substituted aromatic rings linked by a linear or a cyclic spacer. With the aim of obtaining novel pure AR antagonists, we developed a new synthetic methodology, which allowed us to introduce, as linker between two suitably chosen aromatic rings, a triazole moiety. Preliminary data suggest that the herein reported new molecules generally decrease PSA expression, thus confirming their potential AR antagonistic activity.
Resumo:
This study deals with the discovery and characterization of EXN6 and EXN11 as novel tumor-associated proteins. EXN6 is mainly present in breast and ovary cancers (40 and 35%) while EXN11 is mainly detected in primary and metastatic colon cancer (40%). A characterization of the two proteins confirmed that they could be novel targets for cancer therapy.
Resumo:
This PhD thesis is focused on the study of the molecular variability of some specific proteins, part of the outer membrane of the pathogen Neisseria meningitidis, and described as protective antigens and important virulence factors. These antigens have been employed as components of the vaccine developed by Novartis Vaccines against N. meningitidis of serogroup B, and their variability in the meningococcal population is a key aspect when the effect of the vaccine is evaluated. The PhD project has led to complete three major studies described in three different manuscritps, of which two have been published and the third is in preparation. The thesis is structured in three main chapters, each of them dedicated to the three studies. The first, described in Chapter 1, is specifically dedicated to the analysis of the molecular conservation of meningococcal antigens in the genomes of all species classified in the genus Neisseria (Conservation of Meningococcal Antigens in the Genus Neisseria. A. Muzzi et al.. 2013. mBio 4 (3)). The second study, described in Chapter 2, focuses on the analysis of the presence and conservation of the antigens in a panel of bacterial isolates obtained from cases of the disease and from healthy individuals, and collected in the same year and in the same geographical area (Conservation of fHbp, NadA, and NHBA in carrier and pathogenic isolates of Neisseria meningitidis collected in the Czech Republic in 1993. A. Muzzi et al.. Manuscript in preparation). Finally, Chapter 3 describes the molecular features of the antigens in a panel of bacterial isolates collected over a period of 50 years, and representatives of the epidemiological history of meningococcal disease in the Netherlands (An Analysis of the Sequence Variability of Meningococcal fHbp, NadA and NHBA over a 50-Year Period in the Netherlands. S. Bambini et al.. 2013. PloS one e65043).
Resumo:
Aberrant expression of ETS transcription factors, including FLI1 and ERG, due to chromosomal translocations has been described as a driver event in initiation and progression of different tumors. In this study, the impact of prostate cancer (PCa) fusion gene TMPRSS2-ERG was evaluated on components of the insulin-like growth factor (IGF) system and the CD99 molecule, two well documented targets of EWS-FLI1, the hallmark of Ewing sarcoma (ES). The aim of this study was to identify common or distinctive ETS-related mechanisms which could be exploited at biological and clinical level. The results demonstrate that IGF-1R represents a common target of ETS rearrangements as ERG and FLI1 bind IGF-1R gene promoter and their modulation causes alteration in IGF-1R protein levels. At clinical level, this mechanism provides basis for a more rationale use of anti-IGF-1R inhibitors as PCa cells expressing the fusion gene better respond to anti-IGF-1R agents. EWS-FLI1/IGF-1R axis provides rationale for combination of anti-IGF-1R agents with trabectedin, an alkylator agent causing enhanced EWS-FLI1 occupancy on the IGF-1R promoter. TMPRSS2-ERG also influences prognosis relevance of IGF system as high IGF-1R correlates with a better biochemical progression free survival (BPFS) in PCa patients negative for the fusion gene while marginal or no association was found in the total cases or TMPRSS2-ERG-positive cases, respectively. This study indicates CD99 is differentially regulated between ETS-related tumors as CD99 is not a target of ERG. In PCa, CD99 did not show differential expression between TMPRSS2-ERG-positive and –negative cells. A direct correlation was anyway found between ERG and CD99 proteins both in vitro and in patients putatively suggesting that ERG target genes comprehend regulators of CD99. Despite a little trend suggesting a correlation between CD99 expression and a better BPFS, no clinical relevance for CD99 was found in the field of prognostic biomarkers.