9 resultados para Trustees system service corporation.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Service Oriented Computing is a new programming paradigm for addressing distributed system design issues. Services are autonomous computational entities which can be dynamically discovered and composed in order to form more complex systems able to achieve different kinds of task. E-government, e-business and e-science are some examples of the IT areas where Service Oriented Computing will be exploited in the next years. At present, the most credited Service Oriented Computing technology is that of Web Services, whose specifications are enriched day by day by industrial consortia without following a precise and rigorous approach. This PhD thesis aims, on the one hand, at modelling Service Oriented Computing in a formal way in order to precisely define the main concepts it is based upon and, on the other hand, at defining a new approach, called bipolar approach, for addressing system design issues by synergically exploiting choreography and orchestration languages related by means of a mathematical relation called conformance. Choreography allows us to describe systems of services from a global view point whereas orchestration supplies a means for addressing such an issue from a local perspective. In this work we present SOCK, a process algebra based language inspired by the Web Service orchestration language WS-BPEL which catches the essentials of Service Oriented Computing. From the definition of SOCK we will able to define a general model for dealing with Service Oriented Computing where services and systems of services are related to the design of finite state automata and process algebra concurrent systems, respectively. Furthermore, we introduce a formal language for dealing with choreography. Such a language is equipped with a formal semantics and it forms, together with a subset of the SOCK calculus, the bipolar framework. Finally, we present JOLIE which is a Java implentation of a subset of the SOCK calculus and it is part of the bipolar framework we intend to promote.
Resumo:
The European External Action Service (EEAS or Service) is one of the most significant and most debated innovations introduced by the Lisbon Treaty. This analysis intends to explain the anomalous design of the EEAS in light of its function, which consists in the promotion of external action coherence. Coherence is a principle of the EU legal system, which requires synergy in the external actions of the Union and its Members. It can be enforced only through the coordination of European policy-makers' initiatives, by bridging the gap between the 'Communitarian' and intergovernmental approaches. This is the 'Union method' envisaged by A. Merkel: "coordinated action in a spirit of solidarity - each of us in the area for which we are responsible but all working towards the same goal". The EEAS embodies the 'Union method', since it is institutionally linked to both Union organs and Member States. It is also capable of enhancing synergy in policy management and promoting unity in international representation, since its field of action is delimited not by an abstract concern for institutional balance but by a pragmatic assessment of the need for coordination in each sector. The challenge is now to make sure that this pragmatic approach is applied with respect to all the activities of the Service, in order to reinforce its effectiveness. The coordination brought by the EEAS is in fact the only means through which a European foreign policy can come into being: the choice is not between the Community method and the intergovernmental method, but between a coordinated position and nothing at all.
Resumo:
The wide diffusion of cheap, small, and portable sensors integrated in an unprecedented large variety of devices and the availability of almost ubiquitous Internet connectivity make it possible to collect an unprecedented amount of real time information about the environment we live in. These data streams, if properly and timely analyzed, can be exploited to build new intelligent and pervasive services that have the potential of improving people's quality of life in a variety of cross concerning domains such as entertainment, health-care, or energy management. The large heterogeneity of application domains, however, calls for a middleware-level infrastructure that can effectively support their different quality requirements. In this thesis we study the challenges related to the provisioning of differentiated quality-of-service (QoS) during the processing of data streams produced in pervasive environments. We analyze the trade-offs between guaranteed quality, cost, and scalability in streams distribution and processing by surveying existing state-of-the-art solutions and identifying and exploring their weaknesses. We propose an original model for QoS-centric distributed stream processing in data centers and we present Quasit, its prototype implementation offering a scalable and extensible platform that can be used by researchers to implement and validate novel QoS-enforcement mechanisms. To support our study, we also explore an original class of weaker quality guarantees that can reduce costs when application semantics do not require strict quality enforcement. We validate the effectiveness of this idea in a practical use-case scenario that investigates partial fault-tolerance policies in stream processing by performing a large experimental study on the prototype of our novel LAAR dynamic replication technique. Our modeling, prototyping, and experimental work demonstrates that, by providing data distribution and processing middleware with application-level knowledge of the different quality requirements associated to different pervasive data flows, it is possible to improve system scalability while reducing costs.
Resumo:
In this thesis we focus on optimization and simulation techniques applied to solve strategic, tactical and operational problems rising in the healthcare sector. At first we present three applications to Emilia-Romagna Public Health System (SSR) developed in collaboration with Agenzia Sanitaria e Sociale dell'Emilia-Romagna (ASSR), a regional center for innovation and improvement in health. Agenzia launched a strategic campaign aimed at introducing Operations Research techniques as decision making tools to support technological and organizational innovations. The three applications focus on forecast and fund allocation of medical specialty positions, breast screening program extension and operating theater planning. The case studies exploit the potential of combinatorial optimization, discrete event simulation and system dynamics techniques to solve resource constrained problem arising within Emilia-Romagna territory. We then present an application in collaboration with Dipartimento di Epidemiologia del Lazio that focuses on population demand of service allocation to regional emergency departments. Finally, a simulation-optimization approach, developed in collaboration with INESC TECH center of Porto, to evaluate matching policies for the kidney exchange problem is discussed.
Resumo:
In Bosnia Herzegovina the development of clear policy objectives and endorsement of a long-term, coherent and mutual agricultural and rural development policy have also been affected by structural problems: a lack of reliable information on population and other relevant issues, the absence of an adequate land registry system and cadastre. Moreover in BiH the agricultural and rural sectors are characterized by many factors that have typically affected transition countries such as land fragmentation, lack of agricultural mechanization and outdated production technologies, and rural aging, high unemployment and out-migration. In such a framework the condition and role of women in rural areas suffered for the lack of gender disaggregated data and a consequent poor information that lead to the exclusion of gender related questions in the agenda of public institutions and to the absence of targeted policy interventions. The aim of the research is to investigate the role and condition of women in the rural development process of Republic of Srpska and to analyze the capacity of extension services to stimulate their empowerment. Specific research questions include the status of women in the rural areas of Republic of Srpska, the role of government in fostering the empowerment of rural women, and the role of the extension service in supporting rural women. The methodology - inspired by the case study method developed by R. Yin - is designed along the three specific research questions that are used as building blocks. Each of the three research questions is investigated with a combination of methodological tools - including surveys, experts interviews and focus groups - aimed to overcome the lack of data and knowledge that characterize the research objectives.
Resumo:
Internet of Things systems are pervasive systems evolved from cyber-physical to large-scale systems. Due to the number of technologies involved, software development involves several integration challenges. Among them, the ones preventing proper integration are those related to the system heterogeneity, and thus addressing interoperability issues. From a software engineering perspective, developers mostly experience the lack of interoperability in the two phases of software development: programming and deployment. On the one hand, modern software tends to be distributed in several components, each adopting its most-appropriate technology stack, pushing programmers to code in a protocol- and data-agnostic way. On the other hand, each software component should run in the most appropriate execution environment and, as a result, system architects strive to automate the deployment in distributed infrastructures. This dissertation aims to improve the development process by introducing proper tools to handle certain aspects of the system heterogeneity. Our effort focuses on three of these aspects and, for each one of those, we propose a tool addressing the underlying challenge. The first tool aims to handle heterogeneity at the transport and application protocol level, the second to manage different data formats, while the third to obtain optimal deployment. To realize the tools, we adopted a linguistic approach, i.e.\ we provided specific linguistic abstractions that help developers to increase the expressive power of the programming language they use, writing better solutions in more straightforward ways. To validate the approach, we implemented use cases to show that the tools can be used in practice and that they help to achieve the expected level of interoperability. In conclusion, to move a step towards the realization of an integrated Internet of Things ecosystem, we target programmers and architects and propose them to use the presented tools to ease the software development process.
Resumo:
This thesis describes the development of the Sample Fetch Rover (SFR), studied for Mars Sample Return (MSR), an international campaign carried out in cooperation between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The focus of this document is the design of the electro-mechanical systems of the rover. After placing this work into the general context of robotic planetary exploration and summarising the state of the art for what concerns Mars rovers, the architecture of the Mars Sample Return Campaign is presented. A complete overview of the current SFR architecture is provided, touching upon all the main subsystems of the spacecraft. For each area, it is discussed what are the design drivers, the chosen solutions and whether they use heritage technology (in particular from the ExoMars Rover) or new developments. This research focuses on two topics of particular interest, due to their relevance for the mission and the novelty of their design: locomotion and sample acquisition, which are discussed in depth. The early SFR locomotion concepts are summarised, covering the initial trade-offs and discarded designs for higher traverse performance. Once a consolidated architecture was reached, the locomotion subsystem was developed further, defining the details of the suspension, actuators, deployment mechanisms and wheels. This technology is presented here in detail, including some key analysis and test results that support the design and demonstrate how it responds to the mission requirements. Another major electro-mechanical system developed as part of this work is the one dedicated to sample tube acquisition. The concept of operations of this machinery was defined to be robust against the unknown conditions that characterise the mission. The design process led to a highly automated robotic system which is described here in its main components: vision system, robotic arm and tube storage.
Resumo:
The pervasive availability of connected devices in any industrial and societal sector is pushing for an evolution of the well-established cloud computing model. The emerging paradigm of the cloud continuum embraces this decentralization trend and envisions virtualized computing resources physically located between traditional datacenters and data sources. By totally or partially executing closer to the network edge, applications can have quicker reactions to events, thus enabling advanced forms of automation and intelligence. However, these applications also induce new data-intensive workloads with low-latency constraints that require the adoption of specialized resources, such as high-performance communication options (e.g., RDMA, DPDK, XDP, etc.). Unfortunately, cloud providers still struggle to integrate these options into their infrastructures. That risks undermining the principle of generality that underlies the cloud computing scale economy by forcing developers to tailor their code to low-level APIs, non-standard programming models, and static execution environments. This thesis proposes a novel system architecture to empower cloud platforms across the whole cloud continuum with Network Acceleration as a Service (NAaaS). To provide commodity yet efficient access to acceleration, this architecture defines a layer of agnostic high-performance I/O APIs, exposed to applications and clearly separated from the heterogeneous protocols, interfaces, and hardware devices that implement it. A novel system component embodies this decoupling by offering a set of agnostic OS features to applications: memory management for zero-copy transfers, asynchronous I/O processing, and efficient packet scheduling. This thesis also explores the design space of the possible implementations of this architecture by proposing two reference middleware systems and by adopting them to support interactive use cases in the cloud continuum: a serverless platform and an Industry 4.0 scenario. A detailed discussion and a thorough performance evaluation demonstrate that the proposed architecture is suitable to enable the easy-to-use, flexible integration of modern network acceleration into next-generation cloud platforms.
Resumo:
The advances in the aviation field, particularly the development of electric flying vehicles, as UAV and eVTOL, paved the way for setting Urban Air Mobility (UAM) services. UAM would provide services for passengers, goods and emergencies and could offer faster trips than ground ones. It is expected that early UAM operations will be performed at Very Low-Level airspace as 0-500 m Above Ground Level. The purpose of this research is to both explore the main features of UAM and test an aerial network model, which could be integrated in a multimodal transport system where ground and aerial mobility services are provided. Analyses on UAM transport system involved two sub-systems: the transport demand sub-system, i.e., the mobility requirements, and the transport supply sub-system, i.e., the service and facilities enabling mobility. At first, the UAM demand levels and features for an Airport Shuttle service have been explored through a suitable survey, by combining Revealed and Stated Preference methodologies, and by calibrating some discrete mode choice models. Then, the focus has been on the transport supply model for UAM services, by focusing on both the ground access points (vertiports) and the aerial network model. A suitable three-dimensional urban aerial network (3D-UAN) model that could support fast aerial connections between O/D pairs has been proposed. Some tests have been implemented to verify the feasibility of the proposed model. Some flying vehicles supporting an Airport Shuttle service have been simulated on the aerial network, which has been specified in terms of both topological features and link transport costs. The preliminary results have showed that the proposed 3D-UAN model could be suitable for supporting UAM services. As for transport engineering, the UAM system framework proposed in this thesis paves the way for further research on air-ground multimodality in urban areas.