6 resultados para Transport characteristics
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
From the perspective of a new-generation opto-electronic technology based on organic semiconductors, a major objective is to achieve a deep and detailed knowledge of the structure-property relationships, in order to optimize the electronic, optical, and charge transport properties by tuning the chemical-physical characteristics of the compounds. The purpose of this dissertation is to contribute to such understanding, through suitable theoretical and computational studies. Precisely, the structural, electronic, optical, and charge transport characteristics of several promising organic materials recently synthesized are investigated by means of an integrated approach encompassing quantum-chemical calculations, molecular dynamics and kinetic Monte Carlo simulations. Particular care is addressed to the rationalization of optical and charge transport properties in terms of both intra- and intermolecular features. Moreover, a considerable part of this project involves the development of a home-made set of procedures and parts of software code required to assist the modeling of charge transport properties in the framework of the non-adiabatic hopping mechanism applied to organic crystalline materials. As a first part of my investigations, I mainly discuss the optical, electronic, and structural properties of several core-extended rylene derivatives, which can be regarded to as model compounds for graphene nanoribbons. Two families have been studied, consisting in bay-linked perylene bisimide oligomers and N-annulated rylenes. Beside rylene derivatives, my studies also concerned electronic and spectroscopic properties of tetracene diimides, quinoidal oligothiophenes, and oxygen doped picene. As an example of device application, I studied the structural characteristics governing the efficiency of resistive molecular memories based on a derivative of benzoquinone. Finally, as a second part of my investigations, I concentrate on the charge transport properties of perylene bisimides derivatives. Precisely, a comprehensive study of the structural and thermal effects on the charge transport of several core-twisted chlorinated and fluoro-alkylated perylene bisimide n-type semiconductors is presented.
Resumo:
In modern farm systems the economic interests make reducing the risks related to transport practice an important goal. An increasing attention is directed to the welfare of animals in transit, also considering the new existing facilities. In recent years the results coming from the study of animal farm behaviour were used as tool to assess the welfare. In this thesis were analyzed behavioural patterns, jointly with blood variables, to evaluate the stress response of piglets and young bulls during transport. Since the animal behaviour could be different between individuals and these differences can affect animal responses to aversive situations, the individual behavioural characteristics were taken in account. Regarding young bulls, selected to genetic evaluation, the individual behaviour was investigated before, during and after transport, while for piglets was adopted a tested methodology classification and behavioural tests to observe their coping characteristics. The aim of this thesis was to analyse the behavioural and physiological response of young bulls and piglets to transport practice and to investigate if coping characteristics may affect how piglets cope with aversive situations. The thesis is composed by four experimental studies. The first one aims to identify the best existent methodology classification of piglets coping style between those that were credited in literature. The second one investigated the differences in response to novel situations of piglets with different coping styles. The last studies evaluated the stress response of piglets and young bulls to road transportation. The results obtained show that transport did not affect the behaviour and homeostasis of young animals which respond in a different way from adults. However the understanding of individual behavioural characteristic and the use of behavioural patterns, in addition to blood analyses, need to be more investigated in order to be useful tools to assess the animal response in aversive situation.
Resumo:
The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.
Resumo:
Ion channels are pore-forming proteins that regulate the flow of ions across biological cell membranes. Ion channels are fundamental in generating and regulating the electrical activity of cells in the nervous system and the contraction of muscolar cells. Solid-state nanopores are nanometer-scale pores located in electrically insulating membranes. They can be adopted as detectors of specific molecules in electrolytic solutions. Permeation of ions from one electrolytic solution to another, through a protein channel or a synthetic pore is a process of considerable importance and realistic analysis of the main dependencies of ion current on the geometrical and compositional characteristics of these structures are highly required. The project described by this thesis is an effort to improve the understanding of ion channels by devising methods for computer simulation that can predict channel conductance from channel structure. This project describes theory, algorithms and implementation techniques used to develop a novel 3-D numerical simulator of ion channels and synthetic nanopores based on the Brownian Dynamics technique. This numerical simulator could represent a valid tool for the study of protein ion channel and synthetic nanopores, allowing to investigate at the atomic-level the complex electrostatic interactions that determine channel conductance and ion selectivity. Moreover it will provide insights on how parameters like temperature, applied voltage, and pore shape could influence ion translocation dynamics. Furthermore it will help making predictions of conductance of given channel structures and it will add information like electrostatic potential or ionic concentrations throughout the simulation domain helping the understanding of ion flow through membrane pores.
Resumo:
dall'avvento della liberalizzazione, aeroporti e vettori hanno vissuto cambiamenti. Il maggior miglioramneto nella gestione degli aeroporti è una gestione più commerciale ed efficiente. Le forme di regolazione economica e le caratteristiche della gestione manageriale sono state indagate. Dodici paesi sono stati scelti per indagare la situazione del trasporto aereo mondiale, fra questi sia paesi con un sistema maturo sia paesi emergenti. La distribuzione del traffico è stata analizzata con l'indice HHI per evidenziare aeroporti con concentrazione maggiore di 0,25 (in accordo con la normativa statunitense); il sistema aeroportuale è stato analizzato con l'indice di Gini e con l'indice di dominanza. Infine, la teoria dei giochi si è dimostrata un valido supporto per studiare il mercato del trasporto aereo anche con l'uso di giochi di tipo DP
Resumo:
The efficiency of airport airside operations is often compromised by unplanned disruptive events of different kinds, such as bad weather, strikes or technical failures, which negatively influence the punctuality and regularity of operations, causing serious delays and unexpected congestion. They may provoke important impacts and economic losses on passengers, airlines and airport operators, and consequences may propagate in the air network throughout different airports. In order to identify strategies to cope with such events and minimize their impacts, it is crucial to understand how disruptive events affect airports’ performance. The research field related with the risk of severe air transport network disruptions and their impact on society is related to the concepts of vulnerability and resilience. The main objective of this project is to provide a framework that allows to evaluate performance losses and consequences due to unexpected disruptions affecting airport airside operations, supporting the development of a methodology for estimating vulnerability and resilience indicators for airport airside operations. The methodology proposed comprises three phases. In the first phase, airside operations are modelled in both the baseline and disrupted scenarios. The model includes all main airside processes and takes into consideration the uncertainties and dynamics of the system. In the second phase, the model is implemented by using a generic simulation software, AnyLogic. Vulnerability is evaluated by taking into consideration the costs related to flight delays, cancellations and diversions; resilience is determined as a function of the loss of capacity during the entire period of disruption. In the third phase, a Bayesian Network is built in which uncertain variables refer to airport characteristics and disruption type. The Bayesian Network expresses the conditional dependence among these variables and allows to predict the impacts of disruptions on an airside system, determining the elements which influence the system resilience the most.