3 resultados para Transition-temperature

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work mainly arises from the necessity to support the rapid introduction of different biobased polymers that the industrial sector has been facing lately. Indeed, while considerable efforts are being made to find environmentally and economically sustainable materials, less attention is paid to their need to be properly compounded to fulfil increasingly rigorous technical and quality requirements. Therefore, there is a strong demand for the development of a novel generation of compatible additives able to improve the properties of biobased polymers while respecting sustainability. With this in mind, a new class of biobased plasticizers is herein proposed. Five different ketal-diesters were selectively synthesized starting from levulinic acid, a promising renewable chemical platform. These molecules were added to poly(vinyl chloride) as model polymer to test their plasticizing effectiveness. Complete morphological, thermal and viscoelastic characterizations showed a clear correlation between the structural features of the ketal-esters and the properties of the material. In addition, no significant leaching was found in both hydrophilic and lipophilic environments. Importantly, the proposed ketal-diesters performed comparably and, in some cases, even better than commercial plasticizers. The same molecules were then added to bacterial poly(3-hydroxybutyrate), a semicrystalline polyester characterized by poor thermal and mechanical properties. Morphology assessments showed no phase separation and the plasticizing effectiveness was confirmed by thermal and viscoelastic analyses, while leaching tests showed low extraction values. Readily usable fractions with controlled structure and tailored properties were obtained from highly heterogeneous industrial grade Kraft lignin. These fractions were then added to poly(vinyl alcohol). Promising preliminary results in terms of compatibility were achieved, with thermograms showing only one glass transition temperature. Finally, a fully biobased glycerol-trilevulinate was successfully synthesized by means of a mild and solvent-free route. Its plasticizing effectiveness was evaluated on poly(vinyl chloride), showing a significant decrease of the glass transition temperature of the material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interpretation of phase equilibrium and mass transport phenomena in gas/solvent - polymer system at molten or glassy state is relevant in many industrial applications. Among tools available for the prediction of thermodynamics properties in these systems, at molten/rubbery state, is the group contribution lattice-fluid equation of state (GCLF-EoS), developed by Lee and Danner and ultimately based on Panayiotou and Vera LF theory. On the other side, a thermodynamic approach namely non-equilibrium lattice-fluid (NELF) was proposed by Doghieri and Sarti to consistently extend the description of thermodynamic properties of solute polymer systems obtained through a suitable equilibrium model to the case of non-equilibrium conditions below the glass transition temperature. The first objective of this work is to investigate the phase behaviour in solvent/polymer at glassy state by using NELF model and to develop a predictive tool for gas or vapor solubility that could be applied in several different applications: membrane gas separation, barrier materials for food packaging, polymer-based gas sensors and drug delivery devices. Within the efforts to develop a predictive tool of this kind, a revision of the group contribution method developed by High and Danner for the application of LF model by Panayiotou and Vera is considered, with reference to possible alternatives for the mixing rule for characteristic interaction energy between segments. The work also devotes efforts to the analysis of gas permeability in polymer composite materials as formed by a polymer matrix in which domains are dispersed of a second phase and attention is focused on relation for deviation from Maxwell law as function of arrangement, shape of dispersed domains and loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasingly strict regulations on greenhouse gas emissions make the fuel economy a pressing factor for automotive manufacturers. Lightweighting and engine downsizing are two strategies pursued to achieve the target. In this context, materials play a key role since these limit the engine efficiency and components weight, due to their acceptable thermo-mechanical loads. Piston is one of the most stressed engine components and it is traditionally made of Al alloys, whose weakness is to maintain adequate mechanical properties at high temperature due to overaging and softening. The enhancement in strength-to-weight ratio at high temperature of Al alloys had been investigated through two approaches: increase of strength at high temperature or reduction of the alloy density. Several conventional and high performance Al-Si and Al-Cu alloys have been characterized from a microstructural and mechanical point of view, investigating the effects of chemical composition, addition of transition elements and heat treatment optimization, in the specific temperature range for pistons operations. Among the Al-Cu alloys, the research outlines the potentialities of two innovative Al-Cu-Li(-Ag) alloys, typically adopted for structural aerospace components. Moreover, due to the increased probability of abnormal combustions in high performance spark-ignition engines, the second part of the dissertation deals with the study of knocking damages on Al pistons. Thanks to the cooperation with Ferrari S.p.A. and Fluid Machinery Research Group - Unibo, several bench tests have been carried out under controlled knocking conditions. Knocking damage mechanisms were investigated through failure analyses techniques, starting from visual analysis up to detailed SEM investigations. These activities allowed to relate piston knocking damage to engine parameters, with the final aim to develop an on-board knocking controller able to increase engine efficiency, without compromising engine functionality. Finally, attempts have been made to quantify the knock-induced damages, to provide a numerical relation with engine working conditions.