16 resultados para Trammel net, small-scale fishery, discards, Mediterranean sea
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
A new methodology is being devised for ensemble ocean forecasting using distributions of the surface wind field derived from a Bayesian Hierarchical Model (BHM). The ocean members are forced with samples from the posterior distribution of the wind during the assimilation of satellite and in-situ ocean data. The initial condition perturbations are then consistent with the best available knowledge of the ocean state at the beginning of the forecast and amplify the ocean response to uncertainty only in the forcing. The ECMWF Ensemble Prediction System (EPS) surface winds are also used to generate a reference ocean ensemble to evaluate the performance of the BHM method that proves to be eective in concentrating the forecast uncertainty at the ocean meso-scale. An height month experiment of weekly BHM ensemble forecasts was performed in the framework of the operational Mediterranean Forecasting System. The statistical properties of the ensemble are compared with model errors throughout the seasonal cycle proving the existence of a strong relationship between forecast uncertainties due to atmospheric forcing and the seasonal cycle.
Resumo:
Sea-level variability is characterized by multiple interacting factors described in the Fourth Assessment Report (Bindoff et al., 2007) of the Intergovernmental Panel on Climate Change (IPCC) that act over wide spectra of temporal and spatial scales. In Church et al. (2010) sea-level variability and changes are defined as manifestations of climate variability and change. The European Environmental Agency (EEA) defines sea level as one of most important indicators for monitoring climate change, as it integrates the response of different components of the Earths system and is also affected by anthropogenic contributions (EEA, 2011). The balance between the different sea-level contributions represents an important source of uncertainty, involving stochastic processes that are very difficult to describe and understand in detail, to the point that they are defined as an enigma in Munk (2002). Sea-level rate estimates are affected by all these uncertainties, in particular if we look at possible responses to sea-level contributions to future climate. At the regional scale, lateral fluxes also contribute to sea-level variability, adding complexity to sea-level dynamics. The research strategy adopted in this work to approach such an interesting and challenging topic has been to develop an objective methodology to study sea-level variability at different temporal and spatial scales, applicable in each part of the Mediterranean basin in particular, and in the global ocean in general, using all the best calibrated sources of data (for the Mediterranean): in-situ, remote-sensig and numerical models data. The global objective of this work was to achieve a deep understanding of all of the components of the sea-level signal contributing to sea-level variability, tendency and trend and to quantify them.
Resumo:
Il mar Mediterraneo è un bacino acquifero peculiare per la recente colonizzazione di specie aliene, per l’evento geologico legato alla Crisi di salinità del Messiniano e per l’ampio range di salinità. L’individuazione dei meccanismi di colonizzazione si è incentrata sullo studio morfologico, istologico e molecolare delle specie Asperarca nodulosa ed Anadara demiri (Arcidae-Bivalvia-Mollusca). La ricerca si è basata sulla caratterizzazione morfologica, con utilizzo del microscopio elettronico a scansione, al fine di individuare il tipo di sviluppo larvale. Successivamente i dati rilevati al S.E.M. sono stati supportati dall’indagine istologica che ha evidenziato la presenza di gonadi a sessi distinti e la non incubazione larvale. L’ulteriore analisi filogenetica ha permesso di evidenziare la netta suddivisione tra le tre popolazioni studiate, indagine effettuata tramite marcatori arbitrari (RAPDs) e nucleari specifici (ITS). I risultati ottenuti trovano supporto da quanto noto su base morfologica. I dati, nel complesso, mostrano una perdita delle capacità di diffusione della specie tramite sviluppo larvale plantotrofico a favore di quello lecitotrofico o diretto; tale tesi è ulteriormente supportata dai dati molecolari che mostrano una netta separazione delle popolazioni prese in esame ed un conseguente isolamento tra individui appartenenti a zone di profondità del Mediterraneo (sub-bacini abissali). La ricerca ha, inoltre,esaminato i meccanismi di introduzione attuali nel bacino acquifero che è soggetto ad una nuova invasione da parte specie aliene dovuta all’apertura del canale di Suez. L’analisi si è focalizzata sullo studio per l’ individuazione dell’origine della specie aliena A. demiri , di presunta derivazione Indo-Pacifica, ma rivelatasi, nei dati preliminari, di origine Atlantica.
Resumo:
Satellite remote sensing has proved to be an effective support in timely detection and monitoring of marine oil pollution, mainly due to illegal ship discharges. In this context, we have developed a new methodology and technique for optical oil spill detection, which make use of MODIS L2 and MERIS L1B satellite top of atmosphere (TOA) reflectance imagery, for the first time in a highly automated way. The main idea was combining wide swaths and short revisit times of optical sensors with SAR observations, generally used in oil spill monitoring. This arises from the necessity to overcome the SAR reduced coverage and long revisit time of the monitoring area. This can be done now, given the MODIS and MERIS higher spatial resolution with respect to older sensors (250-300 m vs. 1 km), which consents the identification of smaller spills deriving from illicit discharge at sea. The procedure to obtain identifiable spills in optical reflectance images involves removal of oceanic and atmospheric natural variability, in order to enhance oil-water contrast; image clustering, which purpose is to segment the oil spill eventually presents in the image; finally, the application of a set of criteria for the elimination of those features which look like spills (look-alikes). The final result is a classification of oil spill candidate regions by means of a score based on the above criteria.
Resumo:
The modern stratigraphy of clastic continental margins is the result of the interaction between several geological processes acting on different time scales, among which sea level oscillations, sediment supply fluctuations and local tectonics are the main mechanisms. During the past three years my PhD was focused on understanding the impact of each of these process in the deposition of the central and northern Adriatic sedimentary successions, with the aim of reconstructing and quantifying the Late Quaternary eustatic fluctuations. In the last few decades, several Authors tried to quantify past eustatic fluctuations through the analysis of direct sea level indicators, among which drowned barrier-island deposits or coral reefs, or indirect methods, such as Oxygen isotope ratios (δ18O) or modeling simulations. Sea level curves, obtained from direct sea level indicators, record a composite signal, formed by the contribution of the global eustatic change and regional factors, as tectonic processes or glacial-isostatic rebound effects: the eustatic signal has to be obtained by removing the contribution of these other mechanisms. To obtain the most realistic sea level reconstructions it is important to quantify the tectonic regime of the central Adriatic margin. This result has been achieved integrating a numerical approach with the analysis of high-resolution seismic profiles. In detail, the subsidence trend obtained from the geohistory analysis and the backstripping of the borehole PRAD1.2 (the borehole PRAD1.2 is a 71 m continuous borehole drilled in -185 m of water depth, south of the Mid Adriatic Deep - MAD - during the European Project PROMESS 1, Profile Across Mediterranean Sedimentary Systems, Part 1), has been confirmed by the analysis of lowstand paleoshorelines and by benthic foraminifera associations investigated through the borehole. This work showed an evolution from inner-shelf environment, during Marine Isotopic Stage (MIS) 10, to upper-slope conditions, during MIS 2. Once the tectonic regime of the central Adriatic margin has been constrained, it is possible to investigate the impact of sea level and sediment supply fluctuations on the deposition of the Late Pleistocene-Holocene transgressive deposits. The Adriatic transgressive record (TST - Transgressive Systems Tract) is formed by three correlative sedimentary bodies, deposited in less then 14 kyr since the Last Glacial Maximum (LGM); in particular: along the central Adriatic shelf and in the adjacent slope basin the TST is formed by marine units, while along the northern Adriatic shelf the TST is represented by costal deposits in a backstepping configuration. The central Adriatic margin, characterized by a thick transgressive sedimentary succession, is the ideal site to investigate the impact of late Pleistocene climatic and eustatic fluctuations, among which Meltwater Pulses 1A and 1B and the Younger Dryas cold event. The central Adriatic TST is formed by a tripartite deposit bounded by two regional unconformities. In particular, the middle TST unit includes two prograding wedges, deposited in the interval between the two Meltwater Pulse events, as highlighted by several 14C age estimates, and likely recorded the Younger Dryas cold interval. Modeling simulations, obtained with the two coupled models HydroTrend 3.0 and 2D-Sedflux 1.0C (developed by the Community Surface Dynamics Modeling System - CSDMS), integrated by the analysis of high resolution seismic profiles and core samples, indicate that: 1 - the prograding middle TST unit, deposited during the Younger Dryas, was formed as a consequence of an increase in sediment flux, likely connected to a decline in vegetation cover in the catchment area due to the establishment of sub glacial arid conditions; 2 - the two-stage prograding geometry was the consequence of a sea level still-stand (or possibly a fall) during the Younger Dryas event. The northern Adriatic margin, characterized by a broad and gentle shelf (350 km wide with a low angle plunge of 0.02° to the SE), is the ideal site to quantify the timing of each steps of the post LGM sea level rise. The modern shelf is characterized by sandy deposits of barrier-island systems in a backstepping configuration, showing younger ages at progressively shallower depths, which recorded the step-wise nature of the last sea level rise. The age-depth model, obtained by dated samples of basal peat layers, is in good agreement with previous published sea level curves, and highlights the post-glacial eustatic trend. The interval corresponding to the Younger Dyas cold reversal, instead, is more complex: two coeval coastal deposits characterize the northern Adriatic shelf at very different water depths. Several explanations and different models can be attempted to explain this conundrum, but the problem remains still unsolved.
Resumo:
An appropriate management of fisheries resources can only be achieved with the continuous supply of information on the structure and biology of populations, in order to predict the temporal fluctuations. This study supports the importance of investigating the bio-ecology of increasingly exploited and poorly known species, such as gurnards (Osteichthyes, Triglidae) from Adriatic Sea (Mediterranean), to quantify their ecological role into marine community. It also focuses on investigate inter and intra-specific structuring factor of Adriatic population. These objectives were achieved by: 1) investigating aspects of the population dynamics; 2) studying the feeding biology through the examination of stomach contents; 3) using sagittal otoliths as potential marker of species life cycle; 4) getting preliminary data on mDNA phylogeny. Gurnards showed a specie-specific “critical size” coinciding with the start of sexual maturity, the tendency to migrate to greater depths, a change of diet from crustaceans to fish and an increase of variety of food items eaten. Distribution of prey items, predator size range and depth distribution were the main dimensions that influence the breadth of trophic niche and the relative difference amongst Adriatic gurnards. Several feeding preferences were individuated and a possible impact among bigger-size gurnards and other commercial fishes (anchovy, gadoids) and Crustacea (such as mantis prawn and shrimps) were to be necessary considered. Otolith studies showed that gurnard species have a very fast growth despite other results in other areas; intra-specific differences and the increase in the variability of otolith shape, sulcus acusticus shape, S:O ratios, sulcus acusticus external crystals arrangement were shown between juveniles and adults and were linked to growth (individual genetic factors) and to environmental conditions (e.g. depth and trophic niche distribution). In order to facilitate correct biological interpretation of data, molecular data were obtained for comparing morphological distance to genetic ones.
Resumo:
My PhD project was focused on Atlantic bluefin tuna, Thunnus thynnus, a fishery resource overexploited in the last decades. For a better management of stocks, it was necessary to improve scientific knowledge of this species and to develop novel tools to avoid collapse of this important commercial resource. To do this, we used new high throughput sequencing technologies, as Next Generation Sequencing (NGS), and markers linked to expressed genes, as SNPs (Single Nucleotide Polymorphisms). In this work we applied a combined approach: transcriptomic resources were used to build cDNA libreries from mRNA isolated by muscle, and genomic resources allowed to create a reference backbone for this species lacking of reference genome. All cDNA reads, obtained from mRNA, were mapped against this genome and, employing several bioinformatics tools and different restricted parameters, we achieved a set of contigs to detect SNPs. Once a final panel of 384 SNPs was developed, following the selection criteria, it was genotyped in 960 individuals of Atlantic bluefin tuna, including all size/age classes, from larvae to adults, collected from the entire range of the species. The analysis of obtained data was aimed to evaluate the genetic diversity and the population structure of Thunnus thynnus. We detect a low but significant signal of genetic differentiation among spawning samples, that can suggest the presence of three genetically separate reproduction areas. The adult samples resulted instead genetically undifferentiated between them and from the spawning populations, indicating a presence of panmictic population of adult bluefin tuna in the Mediterranean Sea, without different meta populations.
Resumo:
This work is a detailed study of hydrodynamic processes in a defined area, the littoral in front of the Venice Lagoon and its inlets, which are complex morphological areas of interconnection. A finite element hydrodynamic model of the Venice Lagoon and the Adriatic Sea has been developed in order to study the coastal current patterns and the exchanges at the inlets of the Venice Lagoon. This is the first work in this area that tries to model the interaction dynamics, running together a model for the lagoon and the Adriatic Sea. First the barotropic processes near the inlets of the Venice Lagoon have been studied. Data from more than ten tide gauges displaced in the Adriatic Sea have been used in the calibration of the simulated water levels. To validate the model results, empirical flux data measured by ADCP probes installed inside the inlets of Lido and Malamocco have been used and the exchanges through the three inlets of the Venice Lagoon have been analyzed. The comparison between modelled and measured fluxes at the inlets outlined the efficiency of the model to reproduce both tide and wind induced water exchanges between the sea and the lagoon. As a second step, also small scale processes around the inlets that connect the Venice lagoon with the Northern Adriatic Sea have been investigated by means of 3D simulations. Maps of vorticity have been produced, considering the influence of tidal flows and wind stress in the area. A sensitivity analysis has been carried out to define the importance of the advection and of the baroclinic pressure gradients in the development of vortical processes seen along the littoral close to the inlets. Finally a comparison with real data measurements, surface velocity data from HF Radar near the Venice inlets, has been performed, which allows for a better understanding of the processes and their seasonal dynamics. The results outline the predominance of wind and tidal forcing in the coastal area. Wind forcing acts mainly on the mean coastal current inducing its detachment offshore during Sirocco events and an increase of littoral currents during Bora events. The Bora action is more homogeneous on the whole coastal area whereas the Sirocco strengthens its impact in the South, near Chioggia inlet. Tidal forcing at the inlets is mainly barotropic. The sensitivity analysis shows how advection is the main physical process responsible for the persistent vortical structures present along the littoral between the Venice Lagoon inlets. The comparison with measurements from HF Radar not only permitted a validation the model results, but also a description of different patterns in specific periods of the year. The success of the 2D and the 3D simulations on the reproduction both of the SSE, inside and outside the Venice Lagoon, of the tidal flow, through the lagoon inlets, and of the small scale phenomena, occurring along the littoral, indicates that the finite element approach is the most suitable tool for the investigation of coastal processes. For the first time, as shown by the flux modeling, the physical processes that drive the interaction between the two basins were reproduced.
Resumo:
Most basaltic volcanoes are affected by recurrent lateral instabilities during their evolution. Numerous factors have been shown to be involved in the process of flank destabilization occurring over long periods of time or by instantaneous failures. However, the role of these factors on the mechanical behaviour and stability of volcanic edifices is poorly-constrained as lateral failure usually results from the combined effects of several parameters. Our study focuses on the morphological and structural comparison of two end-member basaltic systems, La Reunion (Indian ocean, France) and Stromboli (southern Tyrrhenian sea, Italy). We showed that despite major differences on their volumes and geodynamic settings, both systems present some similarities as they are characterized by an intense intrusive activity along well-developed rift zones and recurrent phenomena of flank collapse during their evolution. Among the factors of instability, the examples of la Reunion and Stromboli evidence the major contribution of intrusive complexes to volcano growth and destruction as attested by field observations and the monitoring of these active volcanoes. Classical models consider the relationship between vertical intrusions of magma and flank movements along a preexisting sliding surface. A set of published and new field data from Piton des Neiges volcano (La Reunion) allowed us to recognize the role of subhorizontal intrusions in the process of flank instability and to characterize the geometry of both subvertical and subhorizontal intrusions within basaltic edifices. This study compares the results of numerical modelling of the displacements associated with high-angle and low-angle intrusions within basaltic volcanoes. We use a Mixed Boundary Element Method to investigate the mechanical response of an edifice to the injection of magmatic intrusions in different stress fields. Our results indicate that the anisotropy of the stress field favours the slip along the intrusions due to cointrusive shear stress, generating flank-scale displacements of the edifice, especially in the case of subhorizontal intrusions, capable of triggering large-scale flank collapses on basaltic volcanoes. Applications of our theoretical results to real cases of flank displacements on basaltic volcanoes (such as the 2007 eruptive crisis at La Reunion and Stromboli) revealed that the previous model of subvertical intrusions-related collapse is a likely mechanism affecting small-scale steeply-sloping basaltic volcanoes like Stromboli. Furthermore, our field study combined to modelling results confirms the importance of shallow-dipping intrusions in the morpho-structural evolution of large gently-sloping basaltic volcanoes like Piton de la Fournaise, Etna and Kilauea, with particular regards to flank instability, which can cause catastrophic tsunamis.