3 resultados para Tracheal

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During my PhD I have been involved in several projects regarding the morphogenesis of the follicular epithelium, such as the analysis of the pathways that correlate follicular epithelium patterning and eggshell genes expression. Moreover, I used the follicular epithelium as a model system to analyze the function of the Drosophila homolog of the human von Hippel-Lindau (d-VHL) during oogenesis, in order to gain insight into the role of h-VHL for the pathogenesis of VHL disease. h-VHL is implicated in a variety of processes and there is now a greater appreciation of HIF-independent h-VHL functions that are relevant to tumour development, including maintenance and organization of the primary cilium, maintenance of the differentiated phenotype in renal cells and regulation of epithelial-mesenchymal transition. However, the function of h-VHL gene during development has not been fully understood. It was previously shown that d-VHL down-regulates the motility of tubular epithelial cells (tracheal cells) during embryogenesis. Epithelial morphogenesis is important for organogenesis and pivotal for carcinogenesis, but mechanisms that control it are poorly understood. The Drosophila follicular epithelium is a genetically tractable model to understand these mechanisms in vivo. Therefore, to examine whether d-VHL has a role in epithelial morphogenesis and maintenance, I performed genetic and molecular analyses by using in vivo and in vitro approaches. From my analysis, I determined that d-VHL binds to and stabilizes microtubules. Loss of d-VHL depolymerizes the microtubule network during oogenesis, leading to a possible deregulation in the subcellular trafficking transport of polarity markers from Golgi apparatus to the different domains in which follicle cells are divided. The analysis carried out has allowed to establish a significant role of d-VHL in the maintenance of the follicular epithelium integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: One major problem in counselling couples with a prenatal diagnosis of a correctable fetal anomaly is the ability to exclude associated malformations that may modify the prognosis. Our aim was to assess the precision of fetal sonography in identifying isolated malformations. METHODS: We retrospectively reviewed the prenatal and postnatal records of our center for cases with a prenatal diagnosis of an isolated fetal anomaly in the period 2002-2007. RESULTS: The antenatal diagnosis of an isolated malformation was made in 284 cases. In one of this cases the anomaly disappeared in utero. Of the remaining cases, the prenatal diagnosis was confirmed after birth in 251 (88.7%). In 8 fetuses (7 with a suspected coarctation of the aorta, 1 with ventricular septal defect) the prenatal diagnosis was not confirmed. In 24 fetuses (8.5%) additional malformations were detected at postnatal or post-mortem. In 16 of these cases the anomalies were mild or would not have changed the prognosis. In 8 cases (2.8%) severe anomalies were present (1 hypoplasia of the corpus callosum with ventriculomegaly, 1 tracheal agenesis, 3 cases with multiple anomalies, 1 Opitz Syndrome, 1 with CHARGE Syndrome, 1 COFS Syndrome). Two of these infants died. CONCLUSIONS: the prenatal diagnosis of an isolated fetal anomaly is highly reliable. However, the probability that additional malformations will go undetected albeit small remains tangible. In our experience, it was 2.8%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidetector row computed tomography over the last decade is commonly used in veterinary medicine. This new technology has an increased spatial and temporal resolution, could evaluate wider scanning range in shorter scanning time, providing an advanced imaging modality. Computed tomography angiographic studies are commonly used in veterinary medicine in order to evaluate vascular structures of the abdomen and the thorax. Pulmonary pathology in feline patients is a very common condition and usually is further evaluating with computed tomography. Up to date few references of the normal computed tomographic aspects of the feline thorax are reported. In this study a computed tomographic pulmonary angiography (CTPA) protocol is reported in normal cats and is compared with the up to date anatomical references. A CTPA protocol using a 64 MDCT in our study achieved high resolution images of the pulmonary arteries, pulmonary veins and bronchial lumen till the level of minor segmental branches. Feline pulmonary bronchial parenchyma demonstrates an architecture of mixed type with a monopedial model observed in the most anatomical parts and the dichotomic aspect is seen at the accessory lobe. The arterial and venous architecture is similar to the bronchial. Statistical analysis demonstrates the linear correlation of tracheal diameter to the felines weight. Vascular variations were noticed. The pulmonary venous system enters into the left atrium through three ostia (left cranial ostia: consisted of the anastomosis of the cranial and caudal portion of the left cranial pulmonary vein; right ostia: consisted of the anastomosis of the right cranial and middle pulmonary vein; and the caudal ostia: consisted of the anastomosis of the right and left caudal pulmonary vein). In conclusion CTPA is applicable in feline patients and provides an excellent imaging of the pulmonary arterial, venous and bronchial system till the level of minor segmental branches.