6 resultados para Time-memory attacks
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.
Resumo:
Introduction and aims of the research Nitric oxide (NO) and endocannabinoids (eCBs) are major retrograde messengers, involved in synaptic plasticity (long-term potentiation, LTP, and long-term depression, LTD) in many brain areas (including hippocampus and neocortex), as well as in learning and memory processes. NO is synthesized by NO synthase (NOS) in response to increased cytosolic Ca2+ and mainly exerts its functions through soluble guanylate cyclase (sGC) and cGMP production. The main target of cGMP is the cGMP-dependent protein kinase (PKG). Activity-dependent release of eCBs in the CNS leads to the activation of the Gαi/o-coupled cannabinoid receptor 1 (CB1) at both glutamatergic and inhibitory synapses. The perirhinal cortex (Prh) is a multimodal associative cortex of the temporal lobe, critically involved in visual recognition memory. LTD is proposed to be the cellular correlate underlying this form of memory. Cholinergic neurotransmission has been shown to play a critical role in both visual recognition memory and LTD in Prh. Moreover, visual recognition memory is one of the main cognitive functions impaired in the early stages of Alzheimer’s disease. The main aim of my research was to investigate the role of NO and ECBs in synaptic plasticity in rat Prh and in visual recognition memory. Part of this research was dedicated to the study of synaptic transmission and plasticity in a murine model (Tg2576) of Alzheimer’s disease. Methods Field potential recordings. Extracellular field potential recordings were carried out in horizontal Prh slices from Sprague-Dawley or Dark Agouti juvenile (p21-35) rats. LTD was induced with a single train of 3000 pulses delivered at 5 Hz (10 min), or via bath application of carbachol (Cch; 50 μM) for 10 min. LTP was induced by theta-burst stimulation (TBS). In addition, input/output curves and 5Hz-LTD were carried out in Prh slices from 3 month-old Tg2576 mice and littermate controls. Behavioural experiments. The spontaneous novel object exploration task was performed in intra-Prh bilaterally cannulated adult Dark Agouti rats. Drugs or vehicle (saline) were directly infused into the Prh 15 min before training to verify the role of nNOS and CB1 in visual recognition memory acquisition. Object recognition memory was tested at 20 min and 24h after the end of the training phase. Results Electrophysiological experiments in Prh slices from juvenile rats showed that 5Hz-LTD is due to the activation of the NOS/sGC/PKG pathway, whereas Cch-LTD relies on NOS/sGC but not PKG activation. By contrast, NO does not appear to be involved in LTP in this preparation. Furthermore, I found that eCBs are involved in LTP induction, but not in basal synaptic transmission, 5Hz-LTD and Cch-LTD. Behavioural experiments demonstrated that the blockade of nNOS impairs rat visual recognition memory tested at 24 hours, but not at 20 min; however, the blockade of CB1 did not affect visual recognition memory acquisition tested at both time points specified. In three month-old Tg2576 mice, deficits in basal synaptic transmission and 5Hz-LTD were observed compared to littermate controls. Conclusions The results obtained in Prh slices from juvenile rats indicate that NO and CB1 play a role in the induction of LTD and LTP, respectively. These results are confirmed by the observation that nNOS, but not CB1, is involved in visual recognition memory acquisition. The preliminary results obtained in the murine model of Alzheimer’s disease indicate that deficits in synaptic transmission and plasticity occur very early in Prh; further investigations are required to characterize the molecular mechanisms underlying these deficits.
Resumo:
Cost, performance and availability considerations are forcing even the most conservative high-integrity embedded real-time systems industry to migrate from simple hardware processors to ones equipped with caches and other acceleration features. This migration disrupts the practices and solutions that industry had developed and consolidated over the years to perform timing analysis. Industry that are confident with the efficiency/effectiveness of their verification and validation processes for old-generation processors, do not have sufficient insight on the effects of the migration to cache-equipped processors. Caches are perceived as an additional source of complexity, which has potential for shattering the guarantees of cost- and schedule-constrained qualification of their systems. The current industrial approach to timing analysis is ill-equipped to cope with the variability incurred by caches. Conversely, the application of advanced WCET analysis techniques on real-world industrial software, developed without analysability in mind, is hardly feasible. We propose a development approach aimed at minimising the cache jitters, as well as at enabling the application of advanced WCET analysis techniques to industrial systems. Our approach builds on:(i) identification of those software constructs that may impede or complicate timing analysis in industrial-scale systems; (ii) elaboration of practical means, under the model-driven engineering (MDE) paradigm, to enforce the automated generation of software that is analyzable by construction; (iii) implementation of a layout optimisation method to remove cache jitters stemming from the software layout in memory, with the intent of facilitating incremental software development, which is of high strategic interest to industry. The integration of those constituents in a structured approach to timing analysis achieves two interesting properties: the resulting software is analysable from the earliest releases onwards - as opposed to becoming so only when the system is final - and more easily amenable to advanced timing analysis by construction, regardless of the system scale and complexity.
Resumo:
Shape memory materials (SMMs) represent an important class of smart materials that have the ability to return from a deformed state to their original shape. Thanks to such a property, SMMs are utilized in a wide range of innovative applications. The increasing number of applications and the consequent involvement of industrial players in the field have motivated researchers to formulate constitutive models able to catch the complex behavior of these materials and to develop robust computational tools for design purposes. Such a research field is still under progress, especially in the prediction of shape memory polymer (SMP) behavior and of important effects characterizing shape memory alloy (SMA) applications. Moreover, the frequent use of shape memory and metallic materials in biomedical devices, particularly in cardiovascular stents, implanted in the human body and experiencing millions of in-vivo cycles by the blood pressure, clearly indicates the need for a deeper understanding of fatigue/fracture failure in microsize components. The development of reliable stent designs against fatigue is still an open subject in scientific literature. Motivated by the described framework, the thesis focuses on several research issues involving the advanced constitutive, numerical and fatigue modeling of elastoplastic and shape memory materials. Starting from the constitutive modeling, the thesis proposes to develop refined phenomenological models for reliable SMA and SMP behavior descriptions. Then, concerning the numerical modeling, the thesis proposes to implement the models into numerical software by developing implicit/explicit time-integration algorithms, to guarantee robust computational tools for practical purposes. The described modeling activities are completed by experimental investigations on SMA actuator springs and polyethylene polymers. Finally, regarding the fatigue modeling, the thesis proposes the introduction of a general computational approach for the fatigue-life assessment of a classical stent design, in order to exploit computer-based simulations to prevent failures and modify design, without testing numerous devices.
Resumo:
Phenomenology is a critical component of autobiographical memory retrieval. Some memories are vivid and rich in sensory details whereas others are faded; some memories are experienced as emotionally intense whereas others are not. Sutin and Robins (2007) identified 10 dimensions in which a memory may vary—i.e., Vividness, Coherence, Accessibility, Sensory Details, Emotional Intensity, Visual Perspective, Time Perspective, Sharing, Distancing, and Valence—and developed a comprehensive psychometrically sound measure of memory phenomenology, the Memory Experiences Questionnaire (MEQ). Phenomenology has been linked to underlining stable dispositions—i.e. personality, as well as to a variety of positive/negative psychological outcomes—well-being and life satisfaction, depression and anxiety, among others. Using the MEQ, a cross-sectional and a longitudinal study were conducted on a large sample of American and Italian adults. In both studies, participants retrieved two ‘key’ personal memories, a Turning Point and a Childhood Memory, and rated the affect and phenomenology of each memory. Participants also completed self-reported measures of personality (i.e. Neuroticism and Conscientiousness), and measures of depression, well-being and life satisfaction. The present research showed that phenomenological ratings tend (a) to cross-sectionally increase across adulthood (Study 1), and (b) to be moderately stable over time, regardless the contents of the memories (Study 2). Interrelations among memory phenomenology, personality and psychological outcome variables were also examined (Study 1 and Study 2). In particular, autobiographical memory phenomenology was proposed as a dynamic expression of personality functioning that partially explains adaptive/maladaptive psychological outcomes. In fact, the findings partially supported the hypothesized mediating effect of phenomenology on the personality association with psychological outcomes. Implications of the findings are discussed proposing future lines of research. In particular, the need for more longitudinal studies is highlighted, along with the combined application of both self-report questionnaires and narrative measures.
Resumo:
Analog In-memory Computing (AIMC) has been proposed in the context of Beyond Von Neumann architectures as a valid strategy to reduce internal data transfers energy consumption and latency, and to improve compute efficiency. The aim of AIMC is to perform computations within the memory unit, typically leveraging the physical features of memory devices. Among resistive Non-volatile Memories (NVMs), Phase-change Memory (PCM) has become a promising technology due to its intrinsic capability to store multilevel data. Hence, PCM technology is currently investigated to enhance the possibilities and the applications of AIMC. This thesis aims at exploring the potential of new PCM-based architectures as in-memory computational accelerators. In a first step, a preliminar experimental characterization of PCM devices has been carried out in an AIMC perspective. PCM cells non-idealities, such as time-drift, noise, and non-linearity have been studied to develop a dedicated multilevel programming algorithm. Measurement-based simulations have been then employed to evaluate the feasibility of PCM-based operations in the fields of Deep Neural Networks (DNNs) and Structural Health Monitoring (SHM). Moreover, a first testchip has been designed and tested to evaluate the hardware implementation of Multiply-and-Accumulate (MAC) operations employing PCM cells. This prototype experimentally demonstrates the possibility to reach a 95% MAC accuracy with a circuit-level compensation of cells time drift and non-linearity. Finally, empirical circuit behavior models have been included in simulations to assess the use of this technology in specific DNN applications, and to enhance the potentiality of this innovative computation approach.