6 resultados para Time code (Audio-visual technology)
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis was aimed at verifying the role of the superior colliculus (SC) in human spatial orienting. To do so, subjects performed two experimental tasks that have been shown to involve SC’s activation in animals, that is a multisensory integration task (Experiment 1 and 2) and a visual target selection task (Experiment 3). To investigate this topic in humans, we took advantage of neurophysiological finding revealing that retinal S-cones do not send projections to the collicular and magnocellular pathway. In the Experiment 1, subjects performed a simple reaction-time task in which they were required to respond as quickly as possible to any sensory stimulus (visual, auditory or bimodal audio-visual). The visual stimulus could be an S-cone stimulus (invisible to the collicular and magnocellular pathway) or a long wavelength stimulus (visible to the SC). Results showed that when using S-cone stimuli, RTs distribution was simply explained by probability summation, indicating that the redundant auditory and visual channels are independent. Conversely, with red long-wavelength stimuli, visible to the SC, the RTs distribution was related to nonlinear neural summation, which constitutes evidence of integration of different sensory information. We also demonstrate that when AV stimuli were presented at fixation, so that the spatial orienting component of the task was reduced, neural summation was possible regardless of stimulus color. Together, these findings provide support for a pivotal role of the SC in mediating multisensory spatial integration in humans, when behavior involves spatial orienting responses. Since previous studies have shown an anatomical asymmetry of fibres projecting to the SC from the hemiretinas, the Experiment 2 was aimed at investigating temporo-nasal asymmetry in multisensory integration. To do so, subjects performed monocularly the same task shown in the Experiment 1. When spatially coincident audio-visual stimuli were visible to the SC (i.e. red stimuli), the RTE depended on a neural coactivation mechanism, suggesting an integration of multisensory information. When using stimuli invisible to the SC (i.e. purple stimuli), the RTE depended only on a simple statistical facilitation effect, in which the two sensory stimuli were processed by independent channels. Finally, we demonstrate that the multisensory integration effect was stronger for stimuli presented to the temporal hemifield than to the nasal hemifield. Taken together, these findings suggested that multisensory stimulation can be differentially effective depending on specific stimulus parameters. The Experiment 3 was aimed at verifying the role of the SC in target selection by using a color-oddity search task, comprising stimuli either visible or invisible to the collicular and magnocellular pathways. Subjects were required to make a saccade toward a target that could be presented alone or with three distractors of another color (either S-cone or long-wavelength). When using S-cone distractors, invisible to the SC, localization errors were similar to those observed in the distractor-free condition. Conversely, with long-wavelength distractors, visible to the SC, saccadic localization error and variability were significantly greater than in either the distractor-free condition or the S-cone distractors condition. Our results clearly indicate that the SC plays a direct role in visual target selection in humans. Overall, our results indicate that the SC plays an important role in mediating spatial orienting responses both when required covert (Experiments 1 and 2) and overt orienting (Experiment 3).
Resumo:
The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.
Resumo:
Lesions to the primary geniculo-striate visual pathway cause blindness in the contralesional visual field. Nevertheless, previous studies have suggested that patients with visual field defects may still be able to implicitly process the affective valence of unseen emotional stimuli (affective blindsight) through alternative visual pathways bypassing the striate cortex. These alternative pathways may also allow exploitation of multisensory (audio-visual) integration mechanisms, such that auditory stimulation can enhance visual detection of stimuli which would otherwise be undetected when presented alone (crossmodal blindsight). The present dissertation investigated implicit emotional processing and multisensory integration when conscious visual processing is prevented by real or virtual lesions to the geniculo-striate pathway, in order to further clarify both the nature of these residual processes and the functional aspects of the underlying neural pathways. The present experimental evidence demonstrates that alternative subcortical visual pathways allow implicit processing of the emotional content of facial expressions in the absence of cortical processing. However, this residual ability is limited to fearful expressions. This finding suggests the existence of a subcortical system specialised in detecting danger signals based on coarse visual cues, therefore allowing the early recruitment of flight-or-fight behavioural responses even before conscious and detailed recognition of potential threats can take place. Moreover, the present dissertation extends the knowledge about crossmodal blindsight phenomena by showing that, unlike with visual detection, sound cannot crossmodally enhance visual orientation discrimination in the absence of functional striate cortex. This finding demonstrates, on the one hand, that the striate cortex plays a causative role in crossmodally enhancing visual orientation sensitivity and, on the other hand, that subcortical visual pathways bypassing the striate cortex, despite affording audio-visual integration processes leading to the improvement of simple visual abilities such as detection, cannot mediate multisensory enhancement of more complex visual functions, such as orientation discrimination.
Resumo:
Human brain is provided with a flexible audio-visual system, which interprets and guides responses to external events according to spatial alignment, temporal synchronization and effectiveness of unimodal signals. The aim of the present thesis was to explore the possibility that such a system might represent the neural correlate of sensory compensation after a damage to one sensory pathway. To this purpose, three experimental studies have been conducted, which addressed the immediate, short-term and long-term effects of audio-visual integration on patients with Visual Field Defect (VFD). Experiment 1 investigated whether the integration of stimuli from different modalities (cross-modal) and from the same modality (within-modal) have a different, immediate effect on localization behaviour. Patients had to localize modality-specific stimuli (visual or auditory), cross-modal stimulus pairs (visual-auditory) and within-modal stimulus pairs (visual-visual). Results showed that cross-modal stimuli evoked a greater improvement than within modal stimuli, consistent with a Bayesian explanation. Moreover, even when visual processing was impaired, cross-modal stimuli improved performance in an optimal fashion. These findings support the hypothesis that the improvement derived from multisensory integration is not attributable to simple target redundancy, and prove that optimal integration of cross-modal signals occurs in processing stage which are not consciously accessible. Experiment 2 examined the possibility to induce a short term improvement of localization performance without an explicit knowledge of visual stimulus. Patients with VFD and patients with neglect had to localize weak sounds before and after a brief exposure to a passive cross-modal stimulation, which comprised spatially disparate or spatially coincident audio-visual stimuli. After exposure to spatially disparate stimuli in the affected field, only patients with neglect exhibited a shifts of auditory localization toward the visual attractor (the so called Ventriloquism After-Effect). In contrast, after adaptation to spatially coincident stimuli, both neglect and hemianopic patients exhibited a significant improvement of auditory localization, proving the occurrence of After Effect for multisensory enhancement. These results suggest the presence of two distinct recalibration mechanisms, each mediated by a different neural route: a geniculo-striate circuit and a colliculus-extrastriate circuit respectively. Finally, Experiment 3 verified whether a systematic audio-visual stimulation could exert a long-lasting effect on patients’ oculomotor behaviour. Eye movements responses during a visual search task and a reading task were studied before and after visual (control) or audio-visual (experimental) training, in a group of twelve patients with VFD and twelve controls subjects. Results showed that prior to treatment, patients’ performance was significantly different from that of controls in relation to fixations and saccade parameters; after audiovisual training, all patients reported an improvement in ocular exploration characterized by fewer fixations and refixations, quicker and larger saccades, and reduced scanpath length. Similarly, reading parameters were significantly affected by the training, with respect to specific impairments observed in left and right hemisphere–damaged patients. The present findings provide evidence that a systematic audio-visual stimulation may encourage a more organized pattern of visual exploration with long lasting effects. In conclusion, results from these studies clearly demonstrate that the beneficial effects of audio-visual integration can be retained in absence of explicit processing of visual stimulus. Surprisingly, an improvement of spatial orienting can be obtained not only when a on-line response is required, but also after either a brief or a long adaptation to audio-visual stimulus pairs, so suggesting the maintenance of mechanisms subserving cross-modal perceptual learning after a damage to geniculo-striate pathway. The colliculus-extrastriate pathway, which is spared in patients with VFD, seems to play a pivotal role in this sensory compensation.
Dall'involucro all'invaso. Lo spazio a pianta centrale nell'opera architettonica di Adalberto Libera
Resumo:
An archetype selected over the centuries Adalberto Libera wrote little, showing more inclination to use the project as the only means of verification. This study uses a survey of the project for purely compositional space in relation to the reason that most other returns with continuity and consistency throughout his work. "The fruit of a type selected over centuries", in the words of Libera, is one of the most widely used and repeated spatial archetypes present in the history of architecture, given its nature as defined by a few consolidated elements and precisely defined with characters of geometric precision and absoluteness, the central space is provided, over the course of evolution of architecture, and its construction aspects as well as symbolic, for various uses, from historical period in which it was to coincide with sacred space for excellence, to others in which it lends itself to many different expressive possibilities of a more "secular". The central space was created on assumptions of a constructive character, and the same exact reason has determined the structural changes over the centuries, calling from time to time with advances in technology, the maximum extent possible and the different applications, which almost always have coincided with the reason for the monumental space. But it’s in the Roman world that the reason for the central space is defined from the start of a series of achievements that fix the character in perpetuity. The Pantheon was seen maximum results and, simultaneously, the archetype indispensable, to the point that it becomes difficult to sustain a discussion of the central space that excludes. But the reason the space station has complied, in ancient Rome, just as exemplary, monuments, public spaces or buildings with very different implications. The same Renaissance, on which Wittkower's proving itself once and for all, the nature and interpretation of sacred space station, and thus the symbolic significance of that invaded underlying interpretations related to Humanism, fixing the space-themed drawing it with the study and direct observation by the four-sixteenth-century masters, the ruins that in those years of renewed interest in the classical world, the first big pieces of excavation of ancient Rome brought to light with great surprise of all. Not a case, the choice to investigate the architectural work of Libera through the grounds of the central space. Investigating its projects and achievements, it turns out as the reason invoked particularly evident from the earliest to latest work, crossing-free period of the war which for many authors in different ways, the distinction between one stage and another, or the final miss. The theme and the occasion for Libera always distinct, it is precisely the key through which to investigate her work, to come to discover that the first-in this case the central plan-is the constant underlying all his work, and the second reason that the quota with or at the same time, we will return different each time and always the same Libera, formed on the major works remained from ancient times, and on this building method, means consciously, that the characters of architectural works, if valid, pass the time, and survive the use and function contingent. As for the facts by which to formalize it, they themselves are purely contingent, and therefore available to be transferred from one work to another, from one project to another, using also the loan. Using the same two words-at-issue and it becomes clear now how the theme of this study is the method of Libera and opportunity to the study of the central space in his work. But there is one aspect that, with respect to space a central plan evolves with the progress of the work of Libera on the archetype, and it is the reason behind all the way, just because an area built entirely on reason centric. It 'just the "center" of space that, ultimately, tells us the real progression and the knowledge that over the years has matured and changed in Libera. In the first phase, heavily laden with symbolic superstructure, even if used in a "bribe" from Free-always ill-disposed to sacrifice the idea of architecture to a phantom-center space is just the figure that identifies the icon represents space itself: the cross, the flame or the statue are different representations of the same idea of center built around an icon. The second part of the work of clearing the space station, changed the size of the orders but the demands of patronage, grows and expands the image space centric, celebratory nature that takes and becomes, in a different way, this same symbol . You see, one in all, as the project of "Civiltà Italiana" or symbolic arch are examples of this different attitude. And at the same point of view, you will understand how the two projects formulated on the reuse of the Mausoleum of Augustus is the key to its passage from first to second phase: the Ara Pacis in the second project, making itself the center of the composition "breaks" the pattern of symbolic figure in the center, because it is itself an architecture. And, in doing so, the transition takes place where the building itself-the central space-to become the center of that space that itself creates and determines, by extending the potential and the expressiveness of the enclosure (or cover) that defines the basin centered. In this second series of projects, which will be the apex and the point of "crisis" in the Palazzo dei Congressi all'E42 received and is no longer so, the symbol at the very geometry of space, but space itself and 'action' will be determined within this; action leading a movement, in the case of the Arco simbolico and the "Civiltà Italiana" or, more frequently, or celebration, as in the great Sala dei Recevimenti all’E42, which, in the first project proposal, is represented as a large area populated by people in suits, at a reception, in fact. In other words, in this second phase, the architecture is no longer a mere container, but it represents the shape of space, representing that which "contains". In the next step-determining the knowledge from which mature in their transition to post-war-is one step that radically changes the way centric space, although formally and compositionally Libera continues the work on the same elements, compounds and relationships in a different way . In this last phase Freedom, center, puts the man in human beings, in the two previous phases, and in a latent, were already at the center of the composition, even if relegated to the role of spectators in the first period, or of supporting actors in the second, now the heart of space. And it’s, as we shall see, the very form of being together in the form of "assembly", in its different shades (up to that sacred) to determine the shape of space, and how to relate the parts that combine to form it. The reconstruction of the birth, evolution and development of the central space of the ground in Libera, was born on the study of the monuments of ancient Rome, intersected on fifty years of recent history, honed on the constancy of a method and practice of a lifetime, becomes itself, Therefore, a project, employing the same mechanisms adopted by Libera; the decomposition and recomposition, research synthesis and unity of form, are in fact the structure of this research work. The road taken by Libera is a lesson in clarity and rationality, above all, and this work would uncover at least a fragment.
Resumo:
Numerosi studi mostrano che gli intervalli temporali sono rappresentati attraverso un codice spaziale che si estende da sinistra verso destra, dove gli intervalli brevi sono rappresentati a sinistra rispetto a quelli lunghi. Inoltre tale disposizione spaziale del tempo può essere influenzata dalla manipolazione dell’attenzione-spaziale. La presente tesi si inserisce nel dibattito attuale sulla relazione tra rappresentazione spaziale del tempo e attenzione-spaziale attraverso l’uso di una tecnica che modula l’attenzione-spaziale, ovvero, l’Adattamento Prismatico (AP). La prima parte è dedicata ai meccanismi sottostanti tale relazione. Abbiamo mostrato che spostando l’attenzione-spaziale con AP, verso un lato dello spazio, si ottiene una distorsione della rappresentazione di intervalli temporali, in accordo con il lato dello spostamento attenzionale. Questo avviene sia con stimoli visivi, sia con stimoli uditivi, nonostante la modalità uditiva non sia direttamente coinvolta nella procedura visuo-motoria di AP. Questo risultato ci ha suggerito che il codice spaziale utilizzato per rappresentare il tempo, è un meccanismo centrale che viene influenzato ad alti livelli della cognizione spaziale. La tesi prosegue con l’indagine delle aree corticali che mediano l’interazione spazio-tempo, attraverso metodi neuropsicologici, neurofisiologici e di neuroimmagine. In particolare abbiamo evidenziato che, le aree localizzate nell’emisfero destro, sono cruciali per l’elaborazione del tempo, mentre le aree localizzate nell’emisfero sinistro sono cruciali ai fini della procedura di AP e affinché AP abbia effetto sugli intervalli temporali. Infine, la tesi, è dedicata allo studio dei disturbi della rappresentazione spaziale del tempo. I risultati ci indicano che un deficit di attenzione-spaziale, dopo danno emisferico destro, provoca un deficit di rappresentazione spaziale del tempo, che si riflette negativamente sulla vita quotidiana dei pazienti. Particolarmente interessanti sono i risultati ottenuti mediante AP. Un trattamento con AP, efficace nel ridurre il deficit di attenzione-spaziale, riduce anche il deficit di rappresentazione spaziale del tempo, migliorando la qualità di vita dei pazienti.