2 resultados para Tier
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Constructing ontology networks typically occurs at design time at the hands of knowledge engineers who assemble their components statically. There are, however, use cases where ontology networks need to be assembled upon request and processed at runtime, without altering the stored ontologies and without tampering with one another. These are what we call "virtual [ontology] networks", and keeping track of how an ontology changes in each virtual network is called "multiplexing". Issues may arise from the connectivity of ontology networks. In many cases, simple flat import schemes will not work, because many ontology managers can cause property assertions to be erroneously interpreted as annotations and ignored by reasoners. Also, multiple virtual networks should optimize their cumulative memory footprint, and where they cannot, this should occur for very limited periods of time. We claim that these problems should be handled by the software that serves these ontology networks, rather than by ontology engineering methodologies. We propose a method that spreads multiple virtual networks across a 3-tier structure, and can reduce the amount of erroneously interpreted axioms, under certain raw statement distributions across the ontologies. We assumed OWL as the core language handled by semantic applications in the framework at hand, due to the greater availability of reasoners and rule engines. We also verified that, in common OWL ontology management software, OWL axiom interpretation occurs in the worst case scenario of pre-order visit. To measure the effectiveness and space-efficiency of our solution, a Java and RESTful implementation was produced within an Apache project. We verified that a 3-tier structure can accommodate reasonably complex ontology networks better, in terms of the expressivity OWL axiom interpretation, than flat-tree import schemes can. We measured both the memory overhead of the additional components we put on top of traditional ontology networks, and the framework's caching capabilities.
Resumo:
Pervasive Sensing is a recent research trend that aims at providing widespread computing and sensing capabilities to enable the creation of smart environments that can sense, process, and act by considering input coming from both people and devices. The capabilities necessary for Pervasive Sensing are nowadays available on a plethora of devices, from embedded devices to PCs and smartphones. The wide availability of new devices and the large amount of data they can access enable a wide range of novel services in different areas, spanning from simple data collection systems to socially-aware collaborative filtering. However, the strong heterogeneity and unreliability of devices and sensors poses significant challenges. So far, existing works on Pervasive Sensing have focused only on limited portions of the whole stack of available devices and data that they can use, to propose and develop mainly vertical solutions. The push from academia and industry for this kind of services shows that time is mature for a more general support framework for Pervasive Sensing solutions able to enhance frail architectures, promote a well balanced usage of resources on different devices, and enable the widest possible access to sensed data, while ensuring a minimal energy consumption on battery-operated devices. This thesis focuses on pervasive sensing systems to extract design guidelines as foundation of a comprehensive reference model for multi-tier Pervasive Sensing applications. The validity of the proposed model is tested in five different scenarios that present peculiar and different requirements, and different hardware and sensors. The ease of mapping from the proposed logical model to the real implementations and the positive performance result campaigns prove the quality of the proposed approach and offer a reliable reference model, together with a direction for the design and deployment of future Pervasive Sensing applications.