14 resultados para Three-level AC-DC Converter
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This PhD dissertation envisages the design of innovative power converters exploiting WBG devices to get state-of-the-art performance in products intended for industrial applications of automotive field. The collaborations with different specialized companies, provided the opportunity to access commercially-available state-of-the-art SiC and GaN technologies and the possibility to realize innovative converter prototypes. Concerning SiC technology, the complete design of a $350kW$ Battery Emulator instrument in collaboration with a company leader in the automotive testing sector, was carried out from scratch exploiting state-of-the-art SiC power-modules, planar magnetics and top-notch MCU technologies. Discrete high-voltage GaN switches were exploited in the Power Supplies design for automotive charger application to target improved performances compared to the market state-of-the-art. Specifically, two high-efficiency prototypes, an AC/DC converter and a DC/DC converter of $7.5kW$, have been realized for this purpose. To further investigate the characteristics of state-of-the-art GaN power devices two measurement set-ups have been designed. In particular, the trapping phenomenon causing the collapse of drain current during ON-state with a consequent degradation of ON-resistance has been analyzed.
Resumo:
After the development of power electronics converters, the number of transformers subjected to non-sinusoidal stresses (including DC) has increased in applications such as HVDC links and traction (electric train power cars). The effects of non-sinusoidal voltages on transformer insulation have been investigated by many researchers, but still now, there are some issues that must be understood. Some of those issues are tackled in this Thesis, studying PD phenomena behavior in Kraft paper, pressboard and mineral oil at different voltage conditions like AC, DC, AC+DC, notched AC and square waveforms. From the point of view of converter transformers, it was found that the combined effect of AC and DC voltages produces higher stresses in the pressboard that those that are present under pure DC voltages. The electrical conductivity of the dielectric systems in DC and AC+DC conditions has demonstrated to be a critical parameter, so, its measurement and analysis was also taken into account during all the experiments. Regarding notched voltages, the RMS reduction caused by notches (depending on firing and overlap angles) seems to increase the PDIV. However, the experimental results show that once PD activity has incepted, the notches increase PD repetition rate and magnitude, producing a higher degradation rate of paper. On the other hand, the reduction of mineral oil stocks, their relatively low flash point as well as environmental issues, are factors that are pushing towards the use of esters as transformer insulating fluids. This PhD Thesis also covers the study of two different esters with the scope to validate their use in traction transformers. Mineral oil was used as benchmark. The complete set of dielectric tests performed in the three fluids, show that esters behave better than mineral oil in practically all the investigated conditions, so, their application in traction transformers is possible and encouraged.
Resumo:
The aim of this thesis was to study the effects of extremely low frequency (ELF) electromagnetic magnetic fields on potassium currents in neural cell lines ( Neuroblastoma SK-N-BE ), using the whole-cell Patch Clamp technique. Such technique is a sophisticated tool capable to investigate the electrophysiological activity at a single cell, and even at single channel level. The total potassium ion currents through the cell membrane was measured while exposing the cells to a combination of static (DC) and alternate (AC) magnetic fields according to the prediction of the so-called â Ion Resonance Hypothesis â. For this purpose we have designed and fabricated a magnetic field exposure system reaching a good compromise between magnetic field homogeneity and accessibility to the biological sample under the microscope. The magnetic field exposure system consists of three large orthogonal pairs of square coils surrounding the patch clamp set up and connected to the signal generation unit, able to generate different combinations of static and/or alternate magnetic fields. Such system was characterized in term of field distribution and uniformity through computation and direct field measurements. No statistically significant changes in the potassium ion currents through cell membrane were reveled when the cells were exposed to AC/DC magnetic field combination according to the afore mentioned âIon Resonance Hypothesisâ.
Resumo:
This Doctoral Thesis aims to study and develop advanced and high-efficient battery chargers for full electric and plug-in electric cars. The document is strictly industry-oriented and relies on automotive standards and regulations. In the first part a general overview about wireless power transfer battery chargers (WPTBCs) and a deep investigation about international standards are carried out. Then, due to the highly increasing attention given to WPTBCs by the automotive industry and considering the need of minimizing weight, size and number of components this work focuses on those architectures that realize a single stage for on-board power conversion avoiding the implementation of the DC/DC converter upstream the battery. Based on the results of the state-of-the-art, the following sections focus on two stages of the architecture: the resonant tank and the primary DC/AC inverter. To reach the maximum transfer efficiency while minimizing weight and size of the vehicle assembly a coordinated system level design procedure for resonant tank along with an innovative control algorithm for the DC/AC primary inverter is proposed. The presented solutions are generalized and adapted for the best trade-off topologies of compensation networks: Series-Series and Series-Parallel. To assess the effectiveness of the above-mentioned objectives, validation and testing are performed through a simulation environment, while experimental test benches are carried out by the collaboration of Delft University of Technology (TU Delft).
Resumo:
Analysis of the peak-to-peak output current ripple amplitude for multiphase and multilevel inverters is presented in this PhD thesis. The current ripple is calculated on the basis of the alternating voltage component, and peak-to-peak value is defined by the current slopes and application times of the voltage levels in a switching period. Detailed analytical expressions of peak-to-peak current ripple distribution over a fundamental period are given as function of the modulation index. For all the cases, reference is made to centered and symmetrical switching patterns, generated either by carrier-based or space vector PWM. Starting from the definition and the analysis of the output current ripple in three-phase two-level inverters, the theoretical developments have been extended to the case of multiphase inverters, with emphasis on the five- and seven-phase inverters. The instantaneous current ripple is introduced for a generic balanced multiphase loads consisting of series RL impedance and ac back emf (RLE). Simplified and effective expressions to account for the maximum of the output current ripple have been defined. The peak-to-peak current ripple diagrams are presented and discussed. The analysis of the output current ripple has been extended also to multilevel inverters, specifically three-phase three-level inverters. Also in this case, the current ripple analysis is carried out for a balanced three-phase system consisting of series RL impedance and ac back emf (RLE), representing both motor loads and grid-connected applications. The peak-to-peak current ripple diagrams are presented and discussed. In addition, simulation and experimental results are carried out to prove the validity of the analytical developments in all the cases. The cases with different phase numbers and with different number of levels are compared among them, and some useful conclusions have been pointed out. Furthermore, some application examples are given.
Resumo:
This thesis presents a new approach for the design and fabrication of bond wire magnetics for power converter applications by using standard IC gold bonding wires and micro-machined magnetic cores. It shows a systematic design and characterization study for bond wire transformers with toroidal and race-track cores for both PCB and silicon substrates. Measurement results show that the use of ferrite cores increases the secondary self-inductance up to 315 µH with a Q-factor up to 24.5 at 100 kHz. Measurement results on LTCC core report an enhancement of the secondary self-inductance up to 23 µH with a Q-factor up to 10.5 at 1.4 MHz. A resonant DC-DC converter is designed in 0.32 µm BCD6s technology at STMicroelectronics with a depletion nmosfet and a bond wire micro-transformer for EH applications. Measures report that the circuit begins to oscillate from a TEG voltage of 280 mV while starts to convert from an input down to 330 mV to a rectified output of 0.8 V at an input of 400 mV. Bond wire magnetics is a cost-effective approach that enables a flexible design of inductors and transformers with high inductance and high turns ratio. Additionally, it supports the development of magnetics on top of the IC active circuitry for package and wafer level integrations, thus enabling the design of high density power components. This makes possible the evolution of PwrSiP and PwrSoC with reliable highly efficient magnetics.
Resumo:
The energy harvesting research field has grown considerably in the last decade due to increasing interests in energy autonomous sensing systems, which require smart and efficient interfaces for extracting power from energy source and power management (PM) circuits. This thesis investigates the design trade-offs for minimizing the intrinsic power of PM circuits, in order to allow operation with very weak energy sources. For validation purposes, three different integrated power converter and PM circuits for energy harvesting applications are presented. They have been designed for nano-power operations and single-source converters can operate with input power lower than 1 μW. The first IC is a buck-boost converter for piezoelectric transducers (PZ) implementing Synchronous Electrical Charge Extraction (SECE), a non-linear energy extraction technique. Moreover, Residual Charge Inversion technique is exploited for extracting energy from PZ with weak and irregular excitations (i.e. lower voltage), and the implemented PM policy, named Two-Way Energy Storage, considerably reduces the start-up time of the converter, improving the overall conversion efficiency. The second proposed IC is a general-purpose buck-boost converter for low-voltage DC energy sources, up to 2.5 V. An ultra-low-power MPPT circuit has been designed in order to track variations of source power. Furthermore, a capacitive boost circuit has been included, allowing the converter start-up from a source voltage VDC0 = 223 mV. A nano-power programmable linear regulator is also included in order to provide a stable voltage to the load. The third IC implements an heterogeneous multisource buck-boost converter. It provides up to 9 independent input channels, of which 5 are specific for PZ (with SECE) and 4 for DC energy sources with MPPT. The inductor is shared among channels and an arbiter, designed with asynchronous logic to reduce the energy consumption, avoids simultaneous access to the buck-boost core, with a dynamic schedule based on source priority.
Resumo:
Maintaining the postharvest quality of whole and fresh-cut fruit during storage and distribution is the major challenge facing fruit industry. For this purpose, industry adopt a wide range of technologies to enable extended shelf-life. Many factors can lead to loss of quality in fresh product, hence the common description of these products as ‘perishable’. As a consequence normal factors such as transpiration and respiration lead ultimately to water loss and senescence of the product. Fruits and vegetables are living commodities and their rate of respiration is of key importance to maintenance of quality. It has been commonly observed that the greater the respiration rate of a product, the shorter the shelf-life. The principal problem for fresh-cut fruit industries is the relative shorter shelf-life of minimally processed fruit (MPF) compared to intact product. This fact is strictly connected with the higher ethylene production of fruit tissue stimulated during fresh-cut processing (peeling, cutting, dipping). 1-Methylcyclopropene (1-MCP) is an inhibitor of ethylene action and several researches have shown its effectiveness on the inhibition of ripening and senescence incidence for intact fruit and consequently on their shelf-life extension. More recently 1-MCP treatment has been tested also for shelf-life extension of MPF but discordant results have been obtained. Considering that in some countries 1-MCP is already a commercial product registered for the use on a number of horticultural products, the main aim of this actual study was to enhance our understanding on the effects of 1-MCP treatment on the quality maintenance of whole and fresh-cut climacteric and non-climacteric fruit (apple, kiwifruit and pineapple). Concerning the effects of 1-MCP on whole fruit, was investigated the effects of a semi-commercial postharvest treatment with 1-MCP on the quality of Pink Lady apples as functions of fruit ripening stage, 1-MCP dose, storage time and also in combination with controlled atmospheres storage in order to better understand what is the relationship among these parameters and if is possible to maximize the 1-MCP treatment to meet the market/consumer needs and then in order to put in the market excellent fruit. To achieve this purpose an incomplete three-level three-factor design was adopted. During the storage were monitored several quality parameters: firmness, ripening index, ethylene and carbon dioxide production and were also performed a sensory evaluations after 6 month of storage. In this study the higher retention of firmness (at the end of storage) was achieved by applying the greatest 1-MCP concentration to fruits with the lowest maturity stage. This finding means that in these semi-commercial conditions we may considerate completely blocked the fruit softening. 1-MCP was able to delay also the ethylene and CO2 production and the maturity parameters (soluble solids content and total acidity). Only in some cases 1-MCP generate a synergistic effect with the CA storage. The results of sensory analyses indicated that, the 1-MCP treatment did not affect the sweetness and whole fruit flavour while had a little effect on the decreasing cut fruit flavour. On the contrary the treated apple was more sour, crisp, firm and juicy. The effects of some treatment (dipping and MAP) on the nutrient stability were also investigated showing that in this case study the adopted treatments did not have drastic effects on the antioxidant compounds on the contrary the dipping may enhance the total antioxidant activity by the accumulation of ascorbic acid on the apple cut surface. Results concerning the effects of 1-MCP in combination with MAP on the quality parameters behaviour of the kiwifruit were not always consistent and clear: in terms of colour maintenance, it seemed to have a synergistic effect with N2O MAP; as far as ripening index is concerned, 1-MCP had a preservative effect, but just for sample packed in air.
Resumo:
Nell’ambito della presente tesi verrà descritto un approccio generalizzato per il controllo delle macchine elettriche trifasi; la prima parte è incentrata nello sviluppo di una metodologia di modellizzazione generale, ossia in grado di descrivere, da un punto di vista matematico, il comportamento di una generica macchina elettrica, che possa quindi includere in sé stessa tutte le caratteristiche salienti che possano caratterizzare ogni specifica tipologia di macchina elettrica. Il passo successivo è quello di realizzare un algoritmo di controllo per macchine elettriche che si poggi sulla teoria generalizzata e che utilizzi per il proprio funzionamento quelle grandezze offerte dal modello unico delle macchine elettriche. La tipologia di controllo che è stata utilizzata è quella che comunemente viene definita come controllo ad orientamento di campo (FOC), per la quale sono stati individuati degli accorgimenti atti a migliorarne le prestazioni dinamiche e di controllo della coppia erogata. Per concludere verrà presentata una serie di prove sperimentali con lo scopo di mettere in risalto alcuni aspetti cruciali nel controllo delle macchine elettriche mediante un algoritmo ad orientamento di campo e soprattutto di verificare l’attendibilità dell’approccio generalizzato alle macchine elettriche trifasi. I risultati sperimentali confermano quindi l’applicabilità del metodo a diverse tipologie di macchine (asincrone e sincrone) e sono stati verificate nelle condizioni operative più critiche: bassa velocità, alta velocità bassi carichi, dinamica lenta e dinamica veloce.
Resumo:
The aim of this thesis is to apply multilevel regression model in context of household surveys. Hierarchical structure in this type of data is characterized by many small groups. In last years comparative and multilevel analysis in the field of perceived health have grown in size. The purpose of this thesis is to develop a multilevel analysis with three level of hierarchy for Physical Component Summary outcome to: evaluate magnitude of within and between variance at each level (individual, household and municipality); explore which covariates affect on perceived physical health at each level; compare model-based and design-based approach in order to establish informativeness of sampling design; estimate a quantile regression for hierarchical data. The target population are the Italian residents aged 18 years and older. Our study shows a high degree of homogeneity within level 1 units belonging from the same group, with an intraclass correlation of 27% in a level-2 null model. Almost all variance is explained by level 1 covariates. In fact, in our model the explanatory variables having more impact on the outcome are disability, unable to work, age and chronic diseases (18 pathologies). An additional analysis are performed by using novel procedure of analysis :"Linear Quantile Mixed Model", named "Multilevel Linear Quantile Regression", estimate. This give us the possibility to describe more generally the conditional distribution of the response through the estimation of its quantiles, while accounting for the dependence among the observations. This has represented a great advantage of our models with respect to classic multilevel regression. The median regression with random effects reveals to be more efficient than the mean regression in representation of the outcome central tendency. A more detailed analysis of the conditional distribution of the response on other quantiles highlighted a differential effect of some covariate along the distribution.
Resumo:
A new conversion structure for three-phase grid-connected photovoltaic (PV) generation plants is presented and discussed in this Thesis. The conversion scheme is based on two insulated PV arrays, each one feeding the dc bus of a standard 2-level three-phase voltage source inverter (VSI). Inverters are connected to the grid by a traditional three-phase transformer having open-end windings at inverters side and either star or delta connection at the grid side. The resulting conversion structure is able to perform as a multilevel VSI, equivalent to a 3-level inverter, doubling the power capability of a single VSI with given voltage and current ratings. Different modulation schemes able to generate proper multilevel voltage waveforms have been discussed and compared. They include known algorithms, some their developments, and new original approaches. The goal was to share the grid power with a given ratio between the two VSI within each cycle period of the PWM, being the PWM pattern suitable for the implementation in industrial DSPs. It has been shown that an extension of the modulation methods for standard two-level inverter can provide a elegant solution for dual two-level inverter. An original control method has been introduced to regulate the dc-link voltages of each VSI, according to the voltage reference given by a single MPPT controller. A particular MPPT algorithm has been successfully tested, based on the comparison of the operating points of the two PV arrays. The small deliberately introduced difference between two operating dc voltages leads towards the MPP in a fast and accurate manner. Either simulation or experimental tests, or even both, always accompanied theoretical developments. For the simulation, the Simulink tool of Matlab has been adopted, whereas the experiments have been carried out by a full-scale low-voltage prototype of the whole PV generation system. All the research work was done at the Lab of the Department of Electrical Engineering, University of Bologna.
Resumo:
Research work carried out in focusing a novel multiphase-multilevel ac motor drive system much suitable for low-voltage high-current power applications. In specific, six-phase asymmetrical induction motor with open-end stator winding configuration, fed from four standard two-level three-phase voltage source inverters (VSIs). Proposed synchronous reference frame control algorithm shares the total dc source power among the 4 VSIs in each switching cycle with three degree of freedom. Precisely, first degree of freedom concerns with the current sharing between two three-phase stator windings. Based on modified multilevel space vector pulse width modulation shares the voltage between each single VSIs of two three-phase stator windings with second and third degree of freedom, having proper multilevel output waveforms. Complete model of whole ac motor drive based on three-phase space vector decomposition approach was developed in PLECS - numerical simulation software working in MATLAB environment. Proposed synchronous reference control algorithm was framed in MATLAB with modified multilevel space vector pulse width modulator. The effectiveness of the entire ac motor drives system was tested. Simulation results are given in detail to show symmetrical and asymmetrical, power sharing conditions. Furthermore, the three degree of freedom are exploited to investigate fault tolerant capabilities in post-fault conditions. Complete set of simulation results are provided when one, two and three VSIs are faulty. Hardware prototype model of quad-inverter was implemented with two passive three-phase open-winding loads using two TMS320F2812 DSP controllers. Developed McBSP (multi-channel buffered serial port) communication algorithm able to control the four VSIs for PWM communication and synchronization. Open-loop control scheme based on inverse three-phase decomposition approach was developed to control entire quad-inverter configuration and tested with balanced and unbalanced operating conditions with simplified PWM techniques. Both simulation and experimental results are always in good agreement with theoretical developments.
Resumo:
The abundance of visual data and the push for robust AI are driving the need for automated visual sensemaking. Computer Vision (CV) faces growing demand for models that can discern not only what images "represent," but also what they "evoke." This is a demand for tools mimicking human perception at a high semantic level, categorizing images based on concepts like freedom, danger, or safety. However, automating this process is challenging due to entropy, scarcity, subjectivity, and ethical considerations. These challenges not only impact performance but also underscore the critical need for interoperability. This dissertation focuses on abstract concept-based (AC) image classification, guided by three technical principles: situated grounding, performance enhancement, and interpretability. We introduce ART-stract, a novel dataset of cultural images annotated with ACs, serving as the foundation for a series of experiments across four key domains: assessing the effectiveness of the end-to-end DL paradigm, exploring cognitive-inspired semantic intermediaries, incorporating cultural and commonsense aspects, and neuro-symbolic integration of sensory-perceptual data with cognitive-based knowledge. Our results demonstrate that integrating CV approaches with semantic technologies yields methods that surpass the current state of the art in AC image classification, outperforming the end-to-end deep vision paradigm. The results emphasize the role semantic technologies can play in developing both effective and interpretable systems, through the capturing, situating, and reasoning over knowledge related to visual data. Furthermore, this dissertation explores the complex interplay between technical and socio-technical factors. By merging technical expertise with an understanding of human and societal aspects, we advocate for responsible labeling and training practices in visual media. These insights and techniques not only advance efforts in CV and explainable artificial intelligence but also propel us toward an era of AI development that harmonizes technical prowess with deep awareness of its human and societal implications.