2 resultados para Thermogravimetric Analysis (TGA)
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The scope of my research project is to produce and characterize new crystalline forms of organic compounds, focusing the attention on co-crystals and then transferring these notions on APIs to produce co-crystals of potential interest in the pharmaceutical field. In the first part of this work co-crystallization experiments were performed using as building blocks the family of aliphatic dicarboxylic acids HOOC-(CH2)n-COOH, with n= 2-8. This class of compounds has always been an object of study because it is characterized by an interesting phenomenon of alternation of melting points: the acids with an even number of carbon atoms show a melting point higher than those with an odd one. The acids were co-crystallized with four dipyridyl molecules (formed by two pyridine rings with a different number of bridging carbon atoms) through the formation of intermolecular interactions N•••(H)O. The bases used were: 4,4’-bipyridine (BPY), 1,2-bis(4-pyridyl)ethane (BPA), 1,2-(di-4-pyridyl)ethylene (BPE) and 1,2-bis(4-pyridyl)propane (BPP). The co-crystals obtained by solution synthesis were characterized by different solid-state techniques to determine the structure and to see how the melting points in co-crystals change. In the second part of this study we tried to obtain new crystal forms of compounds of pharmaceutical interest. The APIs studied are: O-desmethylvenlafaxine, Lidocaine, Nalidixic Acid and Sulfadiazine. Each API was subjected to Polymorph Screening and Salt/Co-crystal Screening experiments to identify new crystal forms characterized by different properties. In a typical Salt/Co-crystal Screening the sample was made to react with a co-former (solid or liquid) through different methods: crystallization by solution, grinding, kneading and solid-gas reactions. The new crystal forms obtained were characterized by different solid state techniques (X-ray single crystal diffraction, X-ray powder diffraction, Differential Scanning Calorimetry, Thermogravimetric Analysis, Evolved gas analysis, FT-IR – ATR, Solid State N.M.R).
Resumo:
Drying oils, and in particular linseed oil, were the most common binding media employed in painting between XVI and XIX centuries. Artists usually operated some pre-treatments on the oils to obtain binders with modified properties, such as different handling qualities or colour. Oil processing has a key role on the subsequent ageing of and degradation of linseed oil paints. In this thesis a multi-analytical approach was adopted to investigate the drying, polymerization and oxidative degradation of the linseed oil paints. In particular, thermogravimetry analysis (TGA), yielding information on the macromolecular scale, were compared with gas-chromatography mass-spectrometry (GC-MS) and direct exposure mass spectrometry (DEMS) providing information on the molecular scale. The study was performed on linseed oils and paint reconstructions prepared according to an accurate historical description of the painting techniques of the 19th century. TGA revealed that during ageing the molecular weight of the oils changes and that higher molecular weight fractions formed. TGA proved to be an excellent tool to compare the oils and paint reconstructions. This technique is able to highlight the different physical behaviour of oils that were processed using different methods and of paint layers on the basis of the different processed oil and /or the pigment used. GC/MS and DE-MS were used to characterise the soluble and non-polymeric fraction of the oils and paint reconstructions. GC/MS allowed us to calculate the ratios of palmitic to stearic acid (P/S), and azelaic to palmitic acid (A/P) and to evaluate effects produced by oil pre-treatments and the presence of different pigments. This helps to understand the role of the pre-treatments and of the pigments on the oxidative degradation undergone by siccative oils during ageing. DE-MS enabled the various molecular weight fractions of the samples to be simultaneously studied, and thus helped to highlight the presence of oxidation and hydrolysis reactions, and the formation of carboxylates that occur during ageing and with the changing of the oil pre-treatments and the pigments. The combination of thermal analysis with molecular techniques such as GC-MS, DEMS and FTIR enabled a model to be developed, for unravelling some crucial issues: 1) how oil pre-treatments produce binders with different physical-chemical qualities, and how this can influence the ageing of an oil paint film; 2) which is the role of the interaction between oil and pigments in the ageing and degradation process.