5 resultados para Thermal electric polarization
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The design process of any electric vehicle system has to be oriented towards the best energy efficiency, together with the constraint of maintaining comfort in the vehicle cabin. Main aim of this study is to research the best thermal management solution in terms of HVAC efficiency without compromising occupant’s comfort and internal air quality. An Arduino controlled Low Cost System of Sensors was developed and compared against reference instrumentation (average R-squared of 0.92) and then used to characterise the vehicle cabin in real parking and driving conditions trials. Data on the energy use of the HVAC was retrieved from the car On-Board Diagnostic port. Energy savings using recirculation can reach 30 %, but pollutants concentration in the cabin builds up in this operating mode. Moreover, the temperature profile appeared strongly nonuniform with air temperature differences up to 10° C. Optimisation methods often require a high number of runs to find the optimal configuration of the system. Fast models proved to be beneficial for these task, while CFD-1D model are usually slower despite the higher level of detail provided. In this work, the collected dataset was used to train a fast ML model of both cabin and HVAC using linear regression. Average scaled RMSE over all trials is 0.4 %, while computation time is 0.0077 ms for each second of simulated time on a laptop computer. Finally, a reinforcement learning environment was built in OpenAI and Stable-Baselines3 using the built-in Proximal Policy Optimisation algorithm to update the policy and seek for the best compromise between comfort, air quality and energy reward terms. The learning curves show an oscillating behaviour overall, with only 2 experiments behaving as expected even if too slow. This result leaves large room for improvement, ranging from the reward function engineering to the expansion of the ML model.
Resumo:
Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of the global warming. In this context, the transportation sector plays a vital role, since it is responsible for a large part of carbon dioxide production. In order to address these issues, the present thesis deals with the development of advanced control strategies for the energy efficiency optimization of plug-in hybrid electric vehicles (PHEVs), supported by the prediction of future working conditions of the powertrain. In particular, a Dynamic Programming algorithm has been developed for the combined optimization of vehicle energy and battery thermal management. At this aim, the battery temperature and the battery cooling circuit control signal have been considered as an additional state and control variables, respectively. Moreover, an adaptive equivalent consumption minimization strategy (A-ECMS) has been modified to handle zero-emission zones, where engine propulsion is not allowed. Navigation data represent an essential element in the achievement of these tasks. With this aim, a novel simulation and testing environment has been developed during the PhD research activity, as an effective tool to retrieve routing information from map service providers via vehicle-to-everything connectivity. Comparisons between the developed and the reference strategies are made, as well, in order to assess their impact on the vehicle energy consumption. All the activities presented in this doctoral dissertation have been carried out at the Green Mobility Research Lab} (GMRL), a research center resulting from the partnership between the University of Bologna and FEV Italia s.r.l., which represents the industrial partner of the research project.
Resumo:
Pulsed electric field technology is one of the most attractive new non-thermal technology thanks to its lower energy consumption and short treatment times. It consists of an electric treatment of short duration (from several ns to several ms) with electric field strengths from 0.1 to 80 kV/cm that lead to an increase in the permeability of the cell membrane. In this PhD thesis, PEF technology was investigated with the aim of improving mass transfer in plant and animal foods by using it alone or in combination with conventional food processes. Different methods of evaluating electroporation for optimizing PEF processing parameters were investigated. In this respect, the degree of membrane permeabilization in plant and animal food matrices was investigated using electrical impedance spectroscopy, current-voltage measurements and magnetic resonance imaging. The research findings provided useful insights and calls for critical choice of electroporation assessment methods for the selection of adequate PEF treatment conditions. It was outlined that the effect of electroporation is highly dependent on the properties of the food matrix and secondary phenomena occurring in the cell structure undergoing PEF treatment, such as the water re-distribution in the tissue due to the exchange of fluids between intra- and extra-cellular environments. This study also confirmed the great potential of combining PEF technology with conventional food processes, with the main purpose of improving the quality of the food material and accelerating the kinetics of mass transfers, in both plant and animal tissues. Consistent reduction of acrylamide formation in potato crisps was achieved by monitoring key PEF process parameters and subsequent manufacturing steps. Kiwifruit snacks showed a significant reduction in drying kinetics when pre-treated with PEF, while their quality was well maintained. Finally, the research results showed that PEF pre-treatments can shorten the brine process as well as the rehydration kinetics of fish muscles.
Resumo:
The idea behind the project is to develop a methodology for analyzing and developing techniques for the diagnosis and the prediction of the state of charge and health of lithium-ion batteries for automotive applications. For lithium-ion batteries, residual functionality is measured in terms of state of health; however, this value cannot be directly associated with a measurable value, so it must be estimated. The development of the algorithms is based on the identification of the causes of battery degradation, in order to model and predict the trend. Therefore, models have been developed that are able to predict the electrical, thermal and aging behavior. In addition to the model, it was necessary to develop algorithms capable of monitoring the state of the battery, online and offline. This was possible with the use of algorithms based on Kalman filters, which allow the estimation of the system status in real time. Through machine learning algorithms, which allow offline analysis of battery deterioration using a statistical approach, it is possible to analyze information from the entire fleet of vehicles. Both systems work in synergy in order to achieve the best performance. Validation was performed with laboratory tests on different batteries and under different conditions. The development of the model allowed to reduce the time of the experimental tests. Some specific phenomena were tested in the laboratory, and the other cases were artificially generated.
Resumo:
This PhD work arises from the necessity to give a contribution to the energy saving field, regarding automotive applications. The aim was to produce a multidisciplinary work to show how much important is to consider different aspects of an electric car realization: from innovative materials to cutting-edge battery thermal management systems (BTMSs), also dealing with the life cycle assessment (LCA) of the battery packs (BPs). Regarding the materials, it has been chosen to focus on carbon fiber composites as their use allows realizing light products with great mechanical properties. Processes and methods to produce carbon fiber goods have been analysed with a special attention on the university solar car Emilia 4. The work proceeds dealing with the common BTMSs on the market (air-cooled, cooling plates, heat pipes) and then it deepens some of the most innovative systems such as the PCM-based BTMSs after a previous experimental campaign to characterize the PCMs. After that, a complex experimental campaign regarding the PCM-based BTMSs has been carried on, considering both uninsulated and insulated systems. About the first category the tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs; the insulated tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs and both of these systems equipped with a liquid cooling circuit. The choice of lighter building materials and the optimization of the BTMS are strategies which helps in reducing the energy consumption, considering both the energy required by the car to move and the BP state of health (SOH). Focusing on this last factor, a clear explanation regarding the importance of taking care about the SOH is given by the analysis of a BP production energy consumption. This is why a final dissertation about the life cycle assessment (LCA) of a BP unit has been presented in this thesis.