6 resultados para Thermal behavior

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The digital electronic market development is founded on the continuous reduction of the transistors size, to reduce area, power, cost and increase the computational performance of integrated circuits. This trend, known as technology scaling, is approaching the nanometer size. The lithographic process in the manufacturing stage is increasing its uncertainty with the scaling down of the transistors size, resulting in a larger parameter variation in future technology generations. Furthermore, the exponential relationship between the leakage current and the threshold voltage, is limiting the threshold and supply voltages scaling, increasing the power density and creating local thermal issues, such as hot spots, thermal runaway and thermal cycles. In addiction, the introduction of new materials and the smaller devices dimension are reducing transistors robustness, that combined with high temperature and frequently thermal cycles, are speeding up wear out processes. Those effects are no longer addressable only at the process level. Consequently the deep sub-micron devices will require solutions which will imply several design levels, as system and logic, and new approaches called Design For Manufacturability (DFM) and Design For Reliability. The purpose of the above approaches is to bring in the early design stages the awareness of the device reliability and manufacturability, in order to introduce logic and system able to cope with the yield and reliability loss. The ITRS roadmap suggests the following research steps to integrate the design for manufacturability and reliability in the standard CAD automated design flow: i) The implementation of new analysis algorithms able to predict the system thermal behavior with the impact to the power and speed performances. ii) High level wear out models able to predict the mean time to failure of the system (MTTF). iii) Statistical performance analysis able to predict the impact of the process variation, both random and systematic. The new analysis tools have to be developed beside new logic and system strategies to cope with the future challenges, as for instance: i) Thermal management strategy that increase the reliability and life time of the devices acting to some tunable parameter,such as supply voltage or body bias. ii) Error detection logic able to interact with compensation techniques as Adaptive Supply Voltage ASV, Adaptive Body Bias ABB and error recovering, in order to increase yield and reliability. iii) architectures that are fundamentally resistant to variability, including locally asynchronous designs, redundancy, and error correcting signal encodings (ECC). The literature already features works addressing the prediction of the MTTF, papers focusing on thermal management in the general purpose chip, and publications on statistical performance analysis. In my Phd research activity, I investigated the need for thermal management in future embedded low-power Network On Chip (NoC) devices.I developed a thermal analysis library, that has been integrated in a NoC cycle accurate simulator and in a FPGA based NoC simulator. The results have shown that an accurate layout distribution can avoid the onset of hot-spot in a NoC chip. Furthermore the application of thermal management can reduce temperature and number of thermal cycles, increasing the systemreliability. Therefore the thesis advocates the need to integrate a thermal analysis in the first design stages for embedded NoC design. Later on, I focused my research in the development of statistical process variation analysis tool that is able to address both random and systematic variations. The tool was used to analyze the impact of self-timed asynchronous logic stages in an embedded microprocessor. As results we confirmed the capability of self-timed logic to increase the manufacturability and reliability. Furthermore we used the tool to investigate the suitability of low-swing techniques in the NoC system communication under process variations. In this case We discovered the superior robustness to systematic process variation of low-swing links, which shows a good response to compensation technique as ASV and ABB. Hence low-swing is a good alternative to the standard CMOS communication for power, speed, reliability and manufacturability. In summary my work proves the advantage of integrating a statistical process variation analysis tool in the first stages of the design flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work of thesis involves various aspects of crystal engineering. Chapter 1 focuses on crystals containing crown ether complexes. Aspects such as the possibility of preparing these materials by non-solution methods, i.e. by direct reaction of the solid components, thermal behavior and also isomorphism and interconversion between hydrates are taken into account. In chapter 2 a study is presented aimed to understanding the relationship between hydrogen bonding capability and shape of the building blocks chosen to construct crystals. The focus is on the control exerted by shape on the organization of sandwich cations such as cobalticinium, decamethylcobalticinium and bisbenzenchromium(I) and on the aggregation of monoanions all containing carboxylic and carboxylate groups, into 0-D, 1-D, 2-D and 3-D networks. Reactions conducted in multi-component molecular assemblies or co-crystals have been recognized as a way to control reactivity in the solid state. The [2+2] photodimerization of olefins is a successful demonstration of how templated solid state synthesis can efficiently synthesize unique materials with remarkable stereoselectivity and under environment-friendly conditions. A demonstration of this synthetic strategy is given in chapter 3. The combination of various types of intermolecular linkages, leading to formation of high order aggregation and crystalline materials or to a random aggregation resulting in an amorphous precipitate, may not go to completeness. In such rare cases an aggregation process intermediate between crystalline and amorphous materials is observed, resulting in the formation of a gel, i.e. a viscoelastic solid-like or liquid-like material. In chapter 4 design of new Low Molecular Weight Gelators is presented. Aspects such as the relationships between molecular structure, crystal packing and gelation properties and the application of this kind of gels as a medium for crystal growth of organic molecules, such as APIs, are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analytical pyrolysis was used to investigate the formation of diketopiperazines (DKPs) which are cyclic dipeptides formed from the thermal degradation of proteins. A quali/quantitative procedure was developed combining microscale flash pyrolysis at 500 °C with gas chromatography-mass spectrometry (GC-MS) of DKPs trapped onto an adsorbent phase. Polar DKPs were silylated prior to GC-MS. Particular attention was paid to the identification of proline (Pro) containing DKPs due to their greater facility of formation. The GC-MS characteristics of more than 80 original and silylated DKPs were collected from the pyrolysis of sixteen linear dipeptides and four model proteins (e.g. bovine serum albumin, BSA). The structure of a novel DKP, cyclo(pyroglutamic-Pro) was established by NMR and ESI-MS analysis, while the structures of other novel DKPs remained tentative. DKPs resulted rather specific markers of amino acid sequence in proteins, even though the thermal degradation of DKPs should be taken into account. Structural information of DKPs gathered from the pyrolysis of model compounds was employed to the identification of these compounds in the pyrolysate of proteinaceous samples, including intrinsecally unfolded protein (IUP). Analysis of the liquid fraction (bio-oil) obtained from the pyrolysis of microalgae Nannochloropsis gaditana, Scenedesmus spp with a bench scale reactor showed that DKPs constituted an important pool of nitrogen-containing compounds. Conversely, the level of DKPs was rather low in the bio-oil of Botryococcus braunii. The developed micropyrolysis procedure was applied in combination with thermogravimetry (TGA) and infrared spectroscopy (FT-IR) to investigate surface interaction between BSA and synthetic chrysotile. The results showed that the thermal behavior of BSA (e.g. DKPs formation) was affected by the different form of doped synthetic chrysotile. The typical DKPs evolved from collagen were quantified in the pyrolysates of archaeological bones from Vicenne Necropolis in order to evaluate their conservation status in combination with TGA, FTIR and XRD analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reliable electronic systems, namely a set of reliable electronic devices connected to each other and working correctly together for the same functionality, represent an essential ingredient for the large-scale commercial implementation of any technological advancement. Microelectronics technologies and new powerful integrated circuits provide noticeable improvements in performance and cost-effectiveness, and allow introducing electronic systems in increasingly diversified contexts. On the other hand, opening of new fields of application leads to new, unexplored reliability issues. The development of semiconductor device and electrical models (such as the well known SPICE models) able to describe the electrical behavior of devices and circuits, is a useful means to simulate and analyze the functionality of new electronic architectures and new technologies. Moreover, it represents an effective way to point out the reliability issues due to the employment of advanced electronic systems in new application contexts. In this thesis modeling and design of both advanced reliable circuits for general-purpose applications and devices for energy efficiency are considered. More in details, the following activities have been carried out: first, reliability issues in terms of security of standard communication protocols in wireless sensor networks are discussed. A new communication protocol is introduced, allows increasing the network security. Second, a novel scheme for the on-die measurement of either clock jitter or process parameter variations is proposed. The developed scheme can be used for an evaluation of both jitter and process parameter variations at low costs. Then, reliability issues in the field of “energy scavenging systems” have been analyzed. An accurate analysis and modeling of the effects of faults affecting circuit for energy harvesting from mechanical vibrations is performed. Finally, the problem of modeling the electrical and thermal behavior of photovoltaic (PV) cells under hot-spot condition is addressed with the development of an electrical and thermal model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal effects are rapidly gaining importance in nanometer heterogeneous integrated systems. Increased power density, coupled with spatio-temporal variability of chip workload, cause lateral and vertical temperature non-uniformities (variations) in the chip structure. The assumption of an uniform temperature for a large circuit leads to inaccurate determination of key design parameters. To improve design quality, we need precise estimation of temperature at detailed spatial resolution which is very computationally intensive. Consequently, thermal analysis of the designs needs to be done at multiple levels of granularity. To further investigate the flow of chip/package thermal analysis we exploit the Intel Single Chip Cloud Computer (SCC) and propose a methodology for calibration of SCC on-die temperature sensors. We also develop an infrastructure for online monitoring of SCC temperature sensor readings and SCC power consumption. Having the thermal simulation tool in hand, we propose MiMAPT, an approach for analyzing delay, power and temperature in digital integrated circuits. MiMAPT integrates seamlessly into industrial Front-end and Back-end chip design flows. It accounts for temperature non-uniformities and self-heating while performing analysis. Furthermore, we extend the temperature variation aware analysis of designs to 3D MPSoCs with Wide-I/O DRAM. We improve the DRAM refresh power by considering the lateral and vertical temperature variations in the 3D structure and adapting the per-DRAM-bank refresh period accordingly. We develop an advanced virtual platform which models the performance, power, and thermal behavior of a 3D-integrated MPSoC with Wide-I/O DRAMs in detail. Moving towards real-world multi-core heterogeneous SoC designs, a reconfigurable heterogeneous platform (ZYNQ) is exploited to further study the performance and energy efficiency of various CPU-accelerator data sharing methods in heterogeneous hardware architectures. A complete hardware accelerator featuring clusters of OpenRISC CPUs, with dynamic address remapping capability is built and verified on a real hardware.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis work has been developed in the framework of a new experimental campaign, proposed by the NUCL-EX Collaboration (INFN III Group), in order to progress in the understanding of the statistical properties of light nuclei, at excitation energies above particle emission threshold, by measuring exclusive data from fusion-evaporation reactions. The determination of the nuclear level density in the A~20 region, the understanding of the statistical behavior of light nuclei with excitation energies ~3 A.MeV, and the measurement of observables linked to the presence of cluster structures of nuclear excited levels are the main physics goals of this work. On the theory side, the contribution to this project given by this work lies in the development of a dedicated Monte-Carlo Hauser-Feshbach code for the evaporation of the compound nucleus. The experimental part of this thesis has consisted in the participation to the measurement 12C+12C at 95 MeV beam energy, at Laboratori Nazionali di Legnaro - INFN, using the GARFIELD+Ring Counter(RCo) set-up, from the beam-time request to the data taking, data reduction, detector calibrations and data analysis. Different results of the data analysis are presented in this thesis, together with a theoretical study of the system, performed with the new statistical decay code. As a result of this work, constraints on the nuclear level density at high excitation energy for light systems ranging from C up to Mg are given. Moreover, pre-equilibrium effects, tentatively interpreted as alpha-clustering effects, are put in evidence, both in the entrance channel of the reaction and in the dissipative dynamics on the path towards thermalisation.