2 resultados para The River
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Anthropogenic activities and climatic processes heavily influence surface water resources by causing their progressive depletion, which in turn affects both societies and the environment. Therefore, there is an urgent need to understand the contribution of human and climatic dynamics on the variation of surface water availability. Here, this investigation is performed on the contiguous United States (CONUS) using remotely-sensed data. Three anthropogenic (i.e., urban area, population, and irrigation) and two climatic factors (i.e., precipitation and temperature) were selected as potential drivers of changes in surface water extent and the overlap between the increase or decrease in these drivers and the variation of surface water was examined. Most of the river basins experienced a surface water gain due to precipitation increase (eastern CONUS), and a reduction of irrigated land (western CONUS). River basins of the arid southwestern region and some river basins of the northeastern area encountered a surface water loss, essentially induced by population growth, along with a precipitation deficit and a general expansion of irrigated land. To further inspect the role of population growth and urbanization on surface water loss, the spatial interaction between human settlements and surface water depletion was examined by evaluating the frequency of surface water loss as a function of distance from urban areas. The decline of the observed frequency was successfully reproduced with an exponential distance-decay model, proving that surface water losses are more concentrated in the proximity of cities. Climatic conditions influenced this pattern, with more widely distributed losses in arid regions compared to temperate and continental areas. The results presented in this Thesis provide an improved understanding of the effects of anthropogenic and climatic dynamics on surface water availability, which could be integrated in the definition of sustainable strategies for urbanization, water management, and surface water restoration.
Resumo:
Sea–level change is one of the ocean characteristics closely connected to climate change. Understanding its variation is essential since a large portion of the world’s population is located in low–lying locations. Two main techniques are employed to measure sea level: satellite altimetry and tide gauges. Satellite altimetry monitors sea–level relative to a geocentric reference, is unaffected by crustal processes and covers nearly the entire surface of the oceans since 1993. Conversely, tide gauges measure sea level at specific coastal locations and relative to a local ground benchmark, therefore are impacted by vertical land movements. In this study, the linear and non–linear geocentric and relative sea–level trends along the Emilia–Romagna coast (Northern Italy) have been analyzed over different periods. In order to assess the local sea–level variability, data from satellite altimetry and tide gauges have been compared over a common time interval (1993–2019), hence disentangling the contribute of vertical land movements. Non–linearity has been also evaluated at the broader scale of the Mediterranean Sea, in order to depict the main variability in geocentric sea–level trends from regional to sub–basin scale. Furthermore, the anthropogenic and natural influence at the river basin scale has been addressed, in order to shed light on the factors inducing the drastic reduction of riverine sediment supply to the Emilia–Romagna coast over the period 1920–2020. The findings of this analysis indicate that the sediment delivery reduction to the coast by rivers has been driven by several anthropogenic processes, acting on various spatiotemporal scales. Moreover, the local absolute sea–level trend is far from linear and appear "contaminated" by the presence of natural oscillations that act at the multi–decadal, quasi–decadal and inter–annual scale, mainly driven by both large–scale climatic modes and variations in local oceanography.