4 resultados para Test procedures

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The worldwide demand for a clean and low-fuel-consuming transport promotes the development of safe, high energy and power electrochemical storage and conversion systems. Lithium-ion batteries (LIBs) are considered today the best technology for this application as demonstrated by the recent interest of automotive industry in hybrid (HEV) and electric vehicles (EV) based on LIBs. This thesis work, starting from the synthesis and characterization of electrode materials and the use of non-conventional electrolytes, demonstrates that LIBs with novel and safe electrolytes and electrode materials meet the targets of specific energy and power established by U.S.A. Department of Energy (DOE) for automotive application in HEV and EV. In chapter 2 is reported the origin of all chemicals used, the description of the instruments used for synthesis and chemical-physical characterizations, the electrodes preparation, the batteries configuration and the electrochemical characterization procedure of electrodes and batteries. Since the electrolyte is the main critical point of a battery, in particular in large- format modules, in chapter 3 we focused on the characterization of innovative and safe electrolytes based on ionic liquids (characterized by high boiling/decomposition points, thermal and electrochemical stability and appreciable conductivity) and mixtures of ionic liquid with conventional electrolyte. In chapter 4 is discussed the microwave accelerated sol–gel synthesis of the carbon- coated lithium iron phosphate (LiFePO 4 -C), an excellent cathode material for LIBs thanks to its intrinsic safety and tolerance to abusive conditions, which showed excellent electrochemical performance in terms of specific capacity and stability. In chapter 5 are presented the chemical-physical and electrochemical characterizations of graphite and titanium-based anode materials in different electrolytes. We also characterized a new anodic material, amorphous SnCo alloy, synthetized with a nanowire morphology that showed to strongly enhance the electrochemical stability of the material during galvanostatic full charge/discharge cycling. Finally, in chapter 6, are reported different types of batteries, assembled using the LiFePO 4 -C cathode material, different anode materials and electrolytes, characterized by deep galvanostatic charge/discharge cycles at different C-rates and by test procedures of the DOE protocol for evaluating pulse power capability and available energy. First, we tested a battery with the innovative cathode material LiFePO 4 -C and conventional graphite anode and carbonate-based electrolyte (EC DMC LiPF 6 1M) that demonstrated to surpass easily the target for power-assist HEV application. Given that the big concern of conventional lithium-ion batteries is the flammability of highly volatile organic carbonate- based electrolytes, we made safe batteries with electrolytes based on ionic liquid (IL). In order to use graphite anode in IL electrolyte we added to the IL 10% w/w of vinylene carbonate (VC) that produces a stable SEI (solid electrolyte interphase) and prevents the graphite exfoliation phenomenon. Then we assembled batteries with LiFePO 4 -C cathode, graphite anode and PYR 14 TFSI 0.4m LiTFSI with 10% w/w of VC that overcame the DOE targets for HEV application and were stable for over 275 cycles. We also assembled and characterized ―high safety‖ batteries with electrolytes based on pure IL, PYR 14 TFSI with 0.4m LiTFSI as lithium salt, and on mixture of this IL and standard electrolyte (PYR 14 TFSI 50% w/w and EC DMC LiPF 6 50% w/w), using titanium-based anodes (TiO 2 and Li 4 Ti 5 O 12 ) that are commonly considered safer than graphite in abusive conditions. The batteries bearing the pure ionic liquid did not satisfy the targets for HEV application, but the batteries with Li 4 Ti 5 O 12 anode and 50-50 mixture electrolyte were able to surpass the targets. We also assembled and characterized a lithium battery (with lithium metal anode) with a polymeric electrolyte based on poly-ethilenoxide (PEO 20 – LiCF 3 SO 3 +10%ZrO 2 ), which satisfied the targets for EV application and showed a very impressive cycling stability. In conclusion, we developed three lithium-ion batteries of different chemistries that demonstrated to be suitable for application in power-assist hybrid vehicles: graphite/EC DMC LiPF 6 /LiFePO 4 -C, graphite/PYR 14 TFSI 0.4m LiTFSI with 10% VC/LiFePO 4 -C and Li 4 T i5 O 12 /PYR 14 TFSI 50%-EC DMC LiPF 6 50%/LiFePO 4 -C. We also demonstrated that an all solid-state polymer lithium battery as Li/PEO 20 –LiCF 3 SO 3 +10%ZrO 2 /LiFePO 4 -C is suitable for application on electric vehicles. Furthermore we developed a promising anodic material alternative to the graphite, based on SnCo amorphous alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Time-Of-Flight (TOF) detector of ALICE is designed to identify charged particles produced in Pb--Pb collisions at the LHC to address the physics of strongly-interacting matter and the Quark-Gluon Plasma (QGP). The detector is based on the Multigap Resistive Plate Chamber (MRPC) technology which guarantees the excellent performance required for a large time-of-flight array. The construction and installation of the apparatus in the experimental site have been completed and the detector is presently fully operative. All the steps which led to the construction of the TOF detector were strictly followed by a set of quality assurance procedures to enable high and uniform performance and eventually the detector has been commissioned with cosmic rays. This work aims at giving a detailed overview of the ALICE TOF detector, also focusing on the tests performed during the construction phase. The first data-taking experience and the first results obtained with cosmic rays during the commissioning phase are presented as well and allow to confirm the readiness state of the TOF detector for LHC collisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I test di qualifica a vibrazioni vengono usati in fase di progettazione di un componente per verificarne la resistenza meccanica alle sollecitazioni dinamiche (di natura vibratoria) applicate durante la sua vita utile. La durata delle vibrazioni applicate al componente durante la sua vita utile (migliaia di ore) deve essere ridotta al fine di realizzare test fattibili in laboratorio, condotti in genere utilizzando uno shaker elettrodinamico. L’idea è quella di aumentare l’intensità delle vibrazioni riducendone la durata. Esistono diverse procedure di Test Tailoring che tramite un metodo di sintesi definiscono un profilo vibratorio da applicare in laboratorio a partire dalle reali vibrazioni applicate al componente: una delle metodologie più comuni si basa sull’equivalenza del danno a fatica prodotto dalle reali vibrazioni e dalle vibrazioni sintetizzate. Questo approccio è piuttosto diffuso tuttavia all’autore non risulta presente nessun riferimento in letteratura che ne certifichi la validità tramite evidenza sperimentalmente. L’obiettivo dell’attività di ricerca è stato di verificare la validità del metodo tramite una campagna sperimentale condotta su opportuni provini. Il metodo viene inizialmente usato per sintetizzare un profilo vibratorio (random stazionario) avente la stessa durata di un profilo vibratorio non stazionario acquisito in condizioni reali. Il danno a fatica prodotto dalla vibrazione sintetizzata è stato confrontato con quello della vibrazione reale in termini di tempo di rottura dei provini. I risultati mostrano che il danno prodotto dalla vibrazione sintetizzata è sovrastimato, quindi l’equivalenza non è rispettata. Sono stati individuati alcuni punti critici e sono state proposte alcune modifiche al metodo per rendere la teoria più robusta. Il metodo è stato verificato con altri test e i risultati confermano la validità del metodo a condizione che i punti critici individuati siano correttamente analizzati.