15 resultados para Temporal analysis
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Astrocytes are the most numerous glial cell type in the mammalian brain and permeate the entire CNS interacting with neurons, vasculature, and other glial cells. Astrocytes display intracellular calcium signals that encode information about local synaptic function, distributed network activity, and high-level cognitive functions. Several studies have investigated the calcium dynamics of astrocytes in sensory areas and have shown that these cells can encode sensory stimuli. Nevertheless, only recently the neuro-scientific community has focused its attention on the role and functions of astrocytes in associative areas such as the hippocampus. In our first study, we used the information theory formalism to show that astrocytes in the CA1 area of the hippocampus recorded with 2-photon fluorescence microscopy during spatial navigation encode spatial information that is complementary and synergistic to information encoded by nearby "place cell" neurons. In our second study, we investigated various computational aspects of applying the information theory formalism to astrocytic calcium data. For this reason, we generated realistic simulations of calcium signals in astrocytes to determine optimal hyperparameters and procedures of information measures and applied them to real astrocytic calcium imaging data. Calcium signals of astrocytes are characterized by complex spatiotemporal dynamics occurring in subcellular parcels of the astrocytic domain which makes studying these cells in 2-photon calcium imaging recordings difficult. However, current analytical tools which identify the astrocytic subcellular regions are time consuming and extensively rely on user-defined parameters. Here, we present Rapid Astrocytic calcium Spatio-Temporal Analysis (RASTA), a novel machine learning algorithm for spatiotemporal semantic segmentation of 2-photon calcium imaging recordings of astrocytes which operates without human intervention. We found that RASTA provided fast and accurate identification of astrocytic cell somata, processes, and cellular domains, extracting calcium signals from identified regions of interest across individual cells and populations of hundreds of astrocytes recorded in awake mice.
Resumo:
Natural hazard related to the volcanic activity represents a potential risk factor, particularly in the vicinity of human settlements. Besides to the risk related to the explosive and effusive activity, the instability of volcanic edifices may develop into large landslides often catastrophically destructive, as shown by the collapse of the northern flank of Mount St. Helens in 1980. A combined approach was applied to analyse slope failures that occurred at Stromboli volcano. SdF slope stability was evaluated by using high-resolution multi-temporal DTMMs and performing limit equilibrium stability analyses. High-resolution topographical data collected with remote sensing techniques and three-dimensional slope stability analysis play a key role in understanding instability mechanism and the related risks. Analyses carried out on the 2002–2003 and 2007 Stromboli eruptions, starting from high-resolution data acquired through airborne remote sensing surveys, permitted the estimation of the lava volumes emplaced on the SdF slope and contributed to the investigation of the link between magma emission and slope instabilities. Limit Equilibrium analyses were performed on the 2001 and 2007 3D models, in order to simulate the slope behavior before 2002-2003 landslide event and after the 2007 eruption. Stability analyses were conducted to understand the mechanisms that controlled the slope deformations which occurred shortly after the 2007 eruption onset, involving the upper part of slope. Limit equilibrium analyses applied to both cases yielded results which are congruent with observations and monitoring data. The results presented in this work undoubtedly indicate that hazard assessment for the island of Stromboli should take into account the fact that a new magma intrusion could lead to further destabilisation of the slope, which may be more significant than the one recently observed because it will affect an already disarranged deposit and fractured and loosened crater area. The two-pronged approach based on the analysis of 3D multi-temporal mapping datasets and on the application of LE methods contributed to better understanding volcano flank behaviour and to be prepared to undertake actions aimed at risk mitigation.
Resumo:
Changepoint analysis is a well established area of statistical research, but in the context of spatio-temporal point processes it is as yet relatively unexplored. Some substantial differences with regard to standard changepoint analysis have to be taken into account: firstly, at every time point the datum is an irregular pattern of points; secondly, in real situations issues of spatial dependence between points and temporal dependence within time segments raise. Our motivating example consists of data concerning the monitoring and recovery of radioactive particles from Sandside beach, North of Scotland; there have been two major changes in the equipment used to detect the particles, representing known potential changepoints in the number of retrieved particles. In addition, offshore particle retrieval campaigns are believed may reduce the particle intensity onshore with an unknown temporal lag; in this latter case, the problem concerns multiple unknown changepoints. We therefore propose a Bayesian approach for detecting multiple changepoints in the intensity function of a spatio-temporal point process, allowing for spatial and temporal dependence within segments. We use Log-Gaussian Cox Processes, a very flexible class of models suitable for environmental applications that can be implemented using integrated nested Laplace approximation (INLA), a computationally efficient alternative to Monte Carlo Markov Chain methods for approximating the posterior distribution of the parameters. Once the posterior curve is obtained, we propose a few methods for detecting significant change points. We present a simulation study, which consists in generating spatio-temporal point pattern series under several scenarios; the performance of the methods is assessed in terms of type I and II errors, detected changepoint locations and accuracy of the segment intensity estimates. We finally apply the above methods to the motivating dataset and find good and sensible results about the presence and quality of changes in the process.
Resumo:
This thesis analyzes the impact of heat extremes in urban and rural environments, considering processes related to severely high temperatures and unusual dryness. The first part deals with the influence of large-scale heatwave events on the local-scale urban heat island (UHI) effect. The temperatures recorded over a 20-year summer period by meteorological stations in 37 European cities are examined to evaluate the variations of UHI during heatwaves with respect to non-heatwave days. A statistical analysis reveals a negligible impact of large-scale extreme temperatures on the local daytime urban climate, while a notable exacerbation of UHI effect at night. A comparison with the UrbClim model outputs confirms the UHI strengthening during heatwave episodes, with an intensity independent of the climate zone. The investigation of the relationship between large-scale temperature anomalies and UHI highlights a smooth and continuous dependence, but with a strong variability. The lack of a threshold behavior in this relationship suggests that large-scale temperature variability can affect the local-scale UHI even in different conditions than during extreme events. The second part examines the transition from meteorological to agricultural drought, being the first stage of the drought propagation process. A multi-year reanalysis dataset involving numerous drought events over the Iberian Peninsula is considered. The behavior of different non-parametric standardized drought indices in drought detection is evaluated. A statistical approach based on run theory is employed, analyzing the main characteristics of drought propagation. The propagation from meteorological to agricultural drought events is found to develop in about 1-2 months. The duration of agricultural drought appears shorter than that of meteorological drought, but the onset is delayed. The propagation probability increases with the severity of the originating meteorological drought. A new combined agricultural drought index is developed to be a useful tool for balancing the characteristics of other adopted indices.
Resumo:
Sigma (σ) receptors are well established as a non-opioid, non-phencyclidine, and haloperidol-sensitive receptor family with its own binding profile and a characteristic distribution in the central nervous system (CNS) as well as in endocrine, immune, and some peripheral tissues. Two σ receptors subtypes, termed σ1 and σ2, have been pharmacologically characterized, but, to date, only the σ1 has also been cloned. Activation of σ1 receptors alter several neurotransmitter systems and dopamine (DA) neurotrasmission has been often shown to constitute an important target of σ receptors in different experimental models; however the exact role of σ1 receptor in dopaminergic neurotransmission remains unclear. The DA transporter (DAT) modulates the spatial and temporal aspects of dopaminergic synaptic transmission and interprer the primary mechanism by wich dopaminergic neurons terminate the signal transmission. For this reason present studies have been focused in understanding whether, in cell models, the human subtype of σ1 (hσ1) receptor is able to directly modulate the human DA transporter (hDAT). In the first part of this thesis, HEK-293 and SH-SY5Y cells were permanently transfected with the hσ1 receptor. Subsequently, they were transfected with another plasmid for transiently expressing the hDAT. The hDAT activity was estimated using the described [3H]DA uptake assay and the effects of σ ligands were evaluated by measuring the uptaken [3H]DA after treating the cells with known σ agonists and antagonists. Results illustrated in this thesis demonstrate that activation of overexpressed hσ1 receptors by (+)-pentazocine, the σ1 agonist prototype, determines an increase of 40% of the extracellular [3H]DA uptake, in comparison to non-treated controls and the σ1 antagonists BD-1047 and NE-100 prevent the positive effect of (+)-pentazocine on DA reuptake DA is likely to be considered a neurotoxic molecule. In fact, when levels of intracellular DA abnormally invrease, vescicles can’t sequester the DA which is metabolized by MAO (A and B) and COMT with consequent overproduction of oxygen reactive species and toxic catabolites. Stress induced by these molecules leads cells to death. Thus, for the second part of this thesis, experiments have been performed in order to investigate functional alterations caused by the (+)-pentazocine-mediated increase of DA uptake; particularly it has been investigated if the increase of intracellular [DA] could affect cells viability. Results obtained from this study demonstrate that (+)-pentazocine alone increases DA cell toxicity in a concentration-dependent manner only in cells co-expressing hσ1 and hDAT and σ1 antagonists are able to revert the (+)-pentazocine-induced increase of cell susceptibility to DA toxicity. In the last part of this thesis, the functional cross-talking between hσ1 receptor and hDAT has been further investigated using confocal microscopy. From the acquired data it could be suggested that, following exposure to (+)-pentazocine, the hσ1 receptors massively translocate towards the plasma membrane and colocalize with the hDATs. However, any physical interaction between the two proteins remains to be proved. In conclusion, the presented study shows for the first time that, in cell models, hσ1 receptors directly modulate the hDAT activity. Facilitation of DA uptake induced by (+)-pentazocine is reflected on the increased cell susceptibility to DA toxicity; these effects are prevented by σ1 selective antagonists. Since numerous compounds, including several drugs of abuse, bind to σ1 receptors and activating them could facilitate the damage of dopaminergic neurons, the reported protective effect showed by σ1 antagonists would represent the pharmacological basis to test these compounds in experimental models of dopaminergic neurodegenerative diseases (i.e. Parkinson’s Disease).
Resumo:
The surface electrocardiogram (ECG) is an established diagnostic tool for the detection of abnormalities in the electrical activity of the heart. The interest of the ECG, however, extends beyond the diagnostic purpose. In recent years, studies in cognitive psychophysiology have related heart rate variability (HRV) to memory performance and mental workload. The aim of this thesis was to analyze the variability of surface ECG derived rhythms, at two different time scales: the discrete-event time scale, typical of beat-related features (Objective I), and the “continuous” time scale of separated sources in the ECG (Objective II), in selected scenarios relevant to psychophysiological and clinical research, respectively. Objective I) Joint time-frequency and non-linear analysis of HRV was carried out, with the goal of assessing psychophysiological workload (PPW) in response to working memory engaging tasks. Results from fourteen healthy young subjects suggest the potential use of the proposed indices in discriminating PPW levels in response to varying memory-search task difficulty. Objective II) A novel source-cancellation method based on morphology clustering was proposed for the estimation of the atrial wavefront in atrial fibrillation (AF) from body surface potential maps. Strong direct correlation between spectral concentration (SC) of atrial wavefront and temporal variability of the spectral distribution was shown in persistent AF patients, suggesting that with higher SC, shorter observation time is required to collect spectral distribution, from which the fibrillatory rate is estimated. This could be time and cost effective in clinical decision-making. The results held for reduced leads sets, suggesting that a simplified setup could also be considered, further reducing the costs. In designing the methods of this thesis, an online signal processing approach was kept, with the goal of contributing to real-world applicability. An algorithm for automatic assessment of ambulatory ECG quality, and an automatic ECG delineation algorithm were designed and validated.
Resumo:
The thesis objectives are to develop new methodologies for study of the space and time variability of Italian upper ocean ecosystem through the combined use of multi-sensors satellite data and in situ observations and to identify the capability and limits of remote sensing observations to monitor the marine state at short and long time scales. Three oceanographic basins have been selected and subjected to different types of analyses. The first region is the Tyrrhenian Sea where a comparative analysis of altimetry and lagrangian measurements was carried out to study the surface circulation. The results allowed to deepen the knowledge of the Tyrrhenian Sea surface dynamics and its variability and to defined the limitations of satellite altimetry measurements to detect small scale marine circulation features. Channel of Sicily study aimed to identify the spatial-temporal variability of phytoplankton biomass and to understand the impact of the upper ocean circulation on the marine ecosystem. An combined analysis of the satellite of long term time series of chlorophyll, Sea Surface Temperature and Sea Level field data was applied. The results allowed to identify the key role of the Atlantic water inflow in modulating the seasonal variability of the phytoplankton biomass in the region. Finally, Italian coastal marine system was studied with the objective to explore the potential capability of Ocean Color data in detecting chlorophyll trend in coastal areas. The most appropriated methodology to detect long term environmental changes was defined through intercomparison of chlorophyll trends detected by in situ and satellite. Then, Italian coastal areas subject to eutrophication problems were identified. This work has demonstrated that satellites data constitute an unique opportunity to define the features and forcing influencing the upper ocean ecosystems dynamics and can be used also to monitor environmental variables capable of influencing phytoplankton productivity.
Resumo:
Procedures for quantitative walking analysis include the assessment of body segment movements within defined gait cycles. Recently, methods to track human body motion using inertial measurement units have been suggested. It is not known if these techniques can be readily transferred to clinical measurement situations. This work investigates the aspects necessary for one inertial measurement unit mounted on the lower back to track orientation, and determine spatio-temporal features of gait outside the confines of a conventional gait laboratory. Apparent limitations of different inertial sensors can be overcome by fusing data using methods such as a Kalman filter. The benefits of optimizing such a filter for the type of motion are unknown. 3D accelerations and 3D angular velocities were collected for 18 healthy subjects while treadmill walking. Optimization of Kalman filter parameters improved pitch and roll angle estimates when compared to angles derived using stereophotogrammetry. A Weighted Fourier Linear Combiner method for estimating 3D orientation angles by constructing an analytical representation of angular velocities and allowing drift free integration is also presented. When tested this method provided accurate estimates of 3D orientation when compared to stereophotogrammetry. Methods to determine spatio-temporal features from lower trunk accelerations generally require knowledge of sensor alignment. A method was developed to estimate the instants of initial and final ground contact from accelerations measured by a waist mounted inertial device without rigorous alignment. A continuous wavelet transform method was used to filter and differentiate the signal and derive estimates of initial and final contact times. The technique was tested with data recorded for both healthy and pathologic (hemiplegia and Parkinson’s disease) subjects and validated using an instrumented mat. The results show that a single inertial measurement unit can assist whole body gait assessment however further investigation is required to understand altered gait timing in some pathological subjects.
Resumo:
This thesis proposes an integrated holistic approach to the study of neuromuscular fatigue in order to encompass all the causes and all the consequences underlying the phenomenon. Starting from the metabolic processes occurring at the cellular level, the reader is guided toward the physiological changes at the motorneuron and motor unit level and from this to the more general biomechanical alterations. In Chapter 1 a list of the various definitions for fatigue spanning several contexts has been reported. In Chapter 2, the electrophysiological changes in terms of motor unit behavior and descending neural drive to the muscle have been studied extensively as well as the biomechanical adaptations induced. In Chapter 3 a study based on the observation of temporal features extracted from sEMG signals has been reported leading to the need of a more robust and reliable indicator during fatiguing tasks. Therefore, in Chapter 4, a novel bi-dimensional parameter is proposed. The study on sEMG-based indicators opened a scenario also on neurophysiological mechanisms underlying fatigue. For this purpose, in Chapter 5, a protocol designed for the analysis of motor unit-related parameters during prolonged fatiguing contractions is presented. In particular, two methodologies have been applied to multichannel sEMG recordings of isometric contractions of the Tibialis Anterior muscle: the state-of-the-art technique for sEMG decomposition and a coherence analysis on MU spike trains. The importance of a multi-scale approach has been finally highlighted in the context of the evaluation of cycling performance, where fatigue is one of the limiting factors. In particular, the last chapter of this thesis can be considered as a paradigm: physiological, metabolic, environmental, psychological and biomechanical factors influence the performance of a cyclist and only when all of these are kept together in a novel integrative way it is possible to derive a clear model and make correct assessments.
Resumo:
A critical point in the analysis of ground displacements time series is the development of data driven methods that allow the different sources that generate the observed displacements to be discerned and characterised. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows reducing the dimensionality of the data space maintaining most of the variance of the dataset explained. Anyway, PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem, i.e. in recovering and separating the original sources that generated the observed data. This is mainly due to the assumptions on which PCA relies: it looks for a new Euclidean space where the projected data are uncorrelated. The Independent Component Analysis (ICA) is a popular technique adopted to approach this problem. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, I use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources, giving a more reliable estimate of them. Here I present the application of the vbICA technique to GPS position time series. First, I use vbICA on synthetic data that simulate a seismic cycle (interseismic + coseismic + postseismic + seasonal + noise) and a volcanic source, and I study the ability of the algorithm to recover the original (known) sources of deformation. Secondly, I apply vbICA to different tectonically active scenarios, such as the 2009 L'Aquila (central Italy) earthquake, the 2012 Emilia (northern Italy) seismic sequence, and the 2006 Guerrero (Mexico) Slow Slip Event (SSE).
Resumo:
Movement analysis carried out in laboratory settings is a powerful, but costly solution since it requires dedicated instrumentation, space and personnel. Recently, new technologies such as the magnetic and inertial measurement units (MIMU) are becoming widely accepted as tools for the assessment of human motion in clinical and research settings. They are relatively easy-to-use and potentially suitable for estimating gait kinematic features, including spatio-temporal parameters. The objective of this thesis regards the development and testing in clinical contexts of robust MIMUs based methods for assessing gait spatio-temporal parameters applicable across a number of different pathological gait patterns. First, considering the need of a solution the least obtrusive as possible, the validity of the single unit based approach was explored. A comparative evaluation of the performance of various methods reported in the literature for estimating gait temporal parameters using a single unit attached to the trunk first in normal gait and then in different pathological gait conditions was performed. Then, the second part of the research headed towards the development of new methods for estimating gait spatio-temporal parameters using shank worn MIMUs on different pathological subjects groups. In addition to the conventional gait parameters, new methods for estimating the changes of the direction of progression were explored. Finally, a new hardware solution and relevant methodology for estimating inter-feet distance during walking was proposed. Results of the technical validation of the proposed methods at different walking speeds and along different paths against a gold standard were reported and showed that the use of two MIMUs attached to the lower limbs associated with a robust method guarantee a much higher accuracy in determining gait spatio-temporal parameters. In conclusion, the proposed methods could be reliably applied to various abnormal gaits obtaining in some cases a comparable level of accuracy with respect to normal gait.
Resumo:
The topic of the Ph.D project focuses on the modelling of the soil-water dynamics inside an instrumented embankment section along Secchia River (Cavezzo (MO)) in the period from 2017 to 2018 and the quantification of the performance of the direct and indirect simulations . The commercial code Hydrus2D by Pc-Progress has been chosen to run the direct simulations. Different soil-hydraulic models have been adopted and compared. The parameters of the different hydraulic models are calibrated using a local optimization method based on the Levenberg - Marquardt algorithm implemented in the Hydrus package. The calibration program is carried out using different types of dataset of observation points, different weighting distributions, different combinations of optimized parameters and different initial sets of parameters. The final goal is an in-depth study of the potentialities and limits of the inverse analysis when applied to a complex geotechnical problem as the case study. The second part of the research focuses on the effects of plant roots and soil-vegetation-atmosphere interaction on the spatial and temporal distribution of pore water pressure in soil. The investigated soil belongs to the West Charlestown Bypass embankment, Newcastle, Australia, that showed in the past years shallow instabilities and the use of long stem planting is intended to stabilize the slope. The chosen plant species is the Malaleuca Styphelioides, native of eastern Australia. The research activity included the design and realization of a specific large scale apparatus for laboratory experiments. Local suction measurements at certain intervals of depth and radial distances from the root bulb are recorded within the vegetated soil mass under controlled boundary conditions. The experiments are then reproduced numerically using the commercial code Hydrus 2D. Laboratory data are used to calibrate the RWU parameters and the parameters of the hydraulic model.
Resumo:
Background: The natural history of Myotonic Dystrophy type 1 is largely unclear, longitudinal studies are lacking. Objectives: to collect clinical and laboratory data, to evaluate sleep disorders, somatic and autonomic skin fibres, neuropsychological and neuroradiological aspects in DM1 patients. Methods: 72 DM1 patients underwent a standardized clinical and neuroradiological evaluation performed by a multidisciplinary team during 3 years of follow-up. Results: longer disease duration was associated with higher incidence of conduction disorders and lower ejection fraction; higher CVF values were predictors for a reduced risk of cardiopathy. Lower functional pulmonary values were associated with class of expansion and were negatively associated with disease duration; arterial blood gas parameters were not associated with expansion size, disease duration nor with respiratory function test. Excessive daytime sleepiness was not associated with class of expansion nor with any of the clinical parameters examined. We detected apnoea in a large percentage of patients, without differences between the 3 genetic classes; higher CVF values were predictors for a reduced risk of apnoea. Skin biopsies demonstrated the presence of a subclinical small fibre neuropathy with involvement of the somatic fibres. The pupillometry study showed lower pupil size at baseline and a lower constriction response to light. The most affected neuropsychological domains were executive functions, visuoconstructional, attention and visuospatial tasks, with a worse performance of E1 patients in the visuoperceptual ability and social cognition tasks. MRI study demonstrated a decrease in the volumes of frontal, parietal, temporal, occipital cortices, accumbens, putamen nuclei and a more severe volume reduction of the isthmus cingulate, transverse temporal, superior parietal and temporal gyri in E2 patients. Discussion: only some clinical parameters could predict the risk of cardiopathy, pulmonary syndrome and sleep disorders, while other clinical aspects proved to be unpredictable, confirming the importance of periodic clinical follow-up of these patients.
Assessing brain connectivity through electroencephalographic signal processing and modeling analysis
Resumo:
Brain functioning relies on the interaction of several neural populations connected through complex connectivity networks, enabling the transmission and integration of information. Recent advances in neuroimaging techniques, such as electroencephalography (EEG), have deepened our understanding of the reciprocal roles played by brain regions during cognitive processes. The underlying idea of this PhD research is that EEG-related functional connectivity (FC) changes in the brain may incorporate important neuromarkers of behavior and cognition, as well as brain disorders, even at subclinical levels. However, a complete understanding of the reliability of the wide range of existing connectivity estimation techniques is still lacking. The first part of this work addresses this limitation by employing Neural Mass Models (NMMs), which simulate EEG activity and offer a unique tool to study interconnected networks of brain regions in controlled conditions. NMMs were employed to test FC estimators like Transfer Entropy and Granger Causality in linear and nonlinear conditions. Results revealed that connectivity estimates reflect information transmission between brain regions, a quantity that can be significantly different from the connectivity strength, and that Granger causality outperforms the other estimators. A second objective of this thesis was to assess brain connectivity and network changes on EEG data reconstructed at the cortical level. Functional brain connectivity has been estimated through Granger Causality, in both temporal and spectral domains, with the following goals: a) detect task-dependent functional connectivity network changes, focusing on internal-external attention competition and fear conditioning and reversal; b) identify resting-state network alterations in a subclinical population with high autistic traits. Connectivity-based neuromarkers, compared to the canonical EEG analysis, can provide deeper insights into brain mechanisms and may drive future diagnostic methods and therapeutic interventions. However, further methodological studies are required to fully understand the accuracy and information captured by FC estimates, especially concerning nonlinear phenomena.
Resumo:
Teeth, with their high mineralisation, incremental growth, and lack of remodelling, serve as biological archives that document an individual's development. This project aims to utilise the potential of teeth in bioarchaeological studies to achieve three primary objectives: 1) to investigate the application of histological and histochemical methods in reconstructing developmental bio-chronologies and early life histories; 2) to refine the temporal precision of isotopic analysis of dentine collagen by developing a novel protocol that integrates micro-sampling techniques with high-resolution histomorphometrics; and 3) to synthesise data from enamel and dentine for a comprehensive understanding of early life development and dietary transitions. This study adopts an integrated multidisciplinary bioarchaeological approach, conducting histomorphometric analysis on enamel and dentine across deciduous and permanent dentitions. It applies high-temporal resolution trace element analysis to enamel using LA-ICPMS and δ13C and δ15N isotope analyses through sequential micro-sampling to dentine of permanent teeth. Samples were selected from diverse archaeological contexts across the Italian peninsula, covering the Upper Palaeolithic, Copper Age, and Early Medieval periods, providing insight into diachronic variations in infant development and life history. Findings highlight the efficacy of histological and histochemical techniques in accurately determining growth rates, physiological stress, dietary shifts (particularly timing of weaning), and age at death in infant remains. The consistency and comparison between enamel and dentine underscores the enhanced insight obtained from integrating information from both tissues. Importantly, the newly proposed protocol significantly improves the temporal accuracy of dentine collagen analysis, facilitating precise chronological placement of the results over broad developmental associations. This study reaffirms the significance of teeth as valuable bioarchaeological instruments. By introducing and testing multidisciplinary methods, it provides deeper insights into early life history and cultural practices across diverse chronological contexts, highlighting the importance of advanced methodologies in extracting detailed, accurate, and nuanced information from past populations.