3 resultados para Tema para versos I e II
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The use of Platelet-rich plasma (PRP), a platelet concentrate made of autogenous blood, is becoming use in the treatment of some orthopaedic diseases. The aim of this study is to assess the effect of PRP on articular cartilage defects in a rabbit model (10 subjects). Twenty osteochondral defects created in the femoropatellar groove, were in ten cases left untreated and in ten cases treated with autogenous PRP. PRP was obtained using a double centrifugation of the rabbit’s blood harvested before the operation. 30 days after the lesion was made in both knee, the left one in each rabbit was treated by a PRP injection, followed by other two injection at 45 and 60 days. Tissue specimens were assessed by macroscopic examination and histological evaluation, that showed a better healing of the lesions in the knee treated with PRP injections.
Resumo:
This thesis investigates two distinct research topics. The main topic (Part I) is the computational modelling of cardiomyocytes derived from human stem cells, both embryonic (hESC-CM) and induced-pluripotent (hiPSC-CM). The aim of this research line lies in developing models of the electrophysiology of hESC-CM and hiPSC-CM in order to integrate the available experimental data and getting in-silico models to be used for studying/making new hypotheses/planning experiments on aspects not fully understood yet, such as the maturation process, the functionality of the Ca2+ hangling or why the hESC-CM/hiPSC-CM action potentials (APs) show some differences with respect to APs from adult cardiomyocytes. Chapter I.1 introduces the main concepts about hESC-CMs/hiPSC-CMs, the cardiac AP, and computational modelling. Chapter I.2 presents the hESC-CM AP model, able to simulate the maturation process through two developmental stages, Early and Late, based on experimental and literature data. Chapter I.3 describes the hiPSC-CM AP model, able to simulate the ventricular-like and atrial-like phenotypes. This model was used to assess which currents are responsible for the differences between the ventricular-like AP and the adult ventricular AP. The secondary topic (Part II) consists in the study of texture descriptors for biological image processing. Chapter II.1 provides an overview on important texture descriptors such as Local Binary Pattern or Local Phase Quantization. Moreover the non-binary coding and the multi-threshold approach are here introduced. Chapter II.2 shows that the non-binary coding and the multi-threshold approach improve the classification performance of cellular/sub-cellular part images, taken from six datasets. Chapter II.3 describes the case study of the classification of indirect immunofluorescence images of HEp2 cells, used for the antinuclear antibody clinical test. Finally the general conclusions are reported.