3 resultados para Techniques of risk in the experimentation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
60 strains (belonging to the genera Lactobacillus, Bifidobacterium, Leuconostoc and Enterococcus) were tested for their capacity to inhibit the growth of 3 strains of Campylobacter jejuni: Lactobacilli and bifidobacteria were left to grow in MRS or TPY broth at 37°C overnight in anaerobic conditions; Campylobacter jejuni was inoculated in blood agar plates at 37°C for 24-48 hours in microaerophilic conditions. The inhibition experiments were carried out in vitro using ”Spot agar test” and “Well diffusion assay” techniques testing both cellular activity and that of the surnatant. 11 strains proved to inhibit the growth of Campylobacter jejuni. These strains were subsequently analised analised in order to evaluate the resistance to particular situations of stress which are found in the gastrointestinal tract and during the industrial transformation processes (Starvation stress, osmotic stress, heat stress, resistance to pH and to bile salts). Resistance to starvation stress: all strains seemed to resist the stress (except one strain). Resistance to osmotic stress: all strains were relatively resistant to the concentrations of 6% w/v of NaCl (except one strain). Resistance to heat stress: only one strain showed little resistance to the 55°C temperature. Resistance to pH: In the presence of a low pH (2.5), many strains rapidly lost their viability after approximately 1 hour. Resistance to bile salts: Except for one strain, all strains seemed to be relatively resistant to the 2% w/v concentration of bile salts. Afterward, strains were identified by using phenotipic and molecular techniques. Phenotipic identification was carried out by using API 50 CHL (bioMérieux) and API 20 STREP identification system (bioMérieux); molecular identification with species-specific PCR: the molecular techniques confirmed the results by phenotipic identification. For testing the antibiotic resistance profile, bacterial strains were subcultured in MRS or TPY broth and incubated for 18 h at 37°C under anaerobic conditions. Antibiotics tested (Tetracycline, Trimethoprim, Cefuroxime, Kanamycin, Chloramphenicol, Vancomycin, Ampycillin, Sterptomycin, Erythromycin) were diluted to the final concentrations of: 2,4,8,16,32,64,128,256 mg/ml. Then, 20 μl fresh bacterial culture (final concentration in the plates approximately 106 cfu/ml) were added to 160 μl MRS or TPY broth and 20 μl antibiotic solution. As positive control the bacterial culture (20 ul) was added to broth (160 ul) and water (20 ul). Test was performed on plates P96, that after the inoculum were incubated for 24 h at 37oC, then the antibiotic resistance was determined by measuring the Optical Density (OD) at 620 nm with Multiscan EX. All strains showed a similar behaviour: resistance to all antibiotic tested. Further studies are needed.
Resumo:
In distributed systems like clouds or service oriented frameworks, applications are typically assembled by deploying and connecting a large number of heterogeneous software components, spanning from fine-grained packages to coarse-grained complex services. The complexity of such systems requires a rich set of techniques and tools to support the automation of their deployment process. By relying on a formal model of components, a technique is devised for computing the sequence of actions allowing the deployment of a desired configuration. An efficient algorithm, working in polynomial time, is described and proven to be sound and complete. Finally, a prototype tool implementing the proposed algorithm has been developed. Experimental results support the adoption of this novel approach in real life scenarios.
Resumo:
During recent decades, the health of ocean ecosystems and fish populations has been threatened by overexploitation, pollution, and anthropogenic-driven climate change. Due to a lack of long-term data, we have a poor understanding of when intensive exploitation began and what impact anthropogenic activities have had on the ecology and evolution of fishes. Such information is crucial to recover degraded and depleted marine ecosystems and fish populations, maximise their productivity in-line with historical levels, and predict their future dynamics. In this thesis, I evaluate anthropogenic impacts on the iconic Atlantic bluefin tuna (Thunnus thynnus; BFT), one of the longest and recently most intensely exploited marine fishes, with a tremendous cultural and economic importance. Using a long-time series of archaeological and archived faunal remains (bones) dating back to approximately two millennia ago, I apply morphological, isotopic, and genomic techniques to perform the first studies on long-term BFT size and growth, diet and habitat use, and demography and adaptation, and produce the first genome-wide data on this species. My findings suggest that exploitation had impacted BFT foraging behaviour by the ~16th century when coastal ecosystem degradation induced a pelagic shift in diet and habitat use. I reveal that BFT biomass began to decline much earlier than hitherto documented, by the 19th century, consistent with intensive tuna trap catches during this period and catch-at-size increasing. I find that BFT juvenile growth had increased by the early 1900s (and more dramatically by the 21st century) which may reflect an evolutionary response to size selective harvest–which I find putative genomic signatures of. Further, I observed that BFT foraging behaviours have been modified following overexploitation during the 20th century, which previously included a isotopically distinct, Black Sea niche. Finally, I show that despite biomass declining from centuries ago, BFT has retained genomic diversity.