2 resultados para TEMPERATURE PHOTOSENSITIZED OXIDATION

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innovation in several industrial sectors has been recently characterized by the need for reducing the operative temperature either for economic or environmental related aspects. Promising technological solutions require the acquisition of fundamental-based knowledge to produce safe and robust systems. In this sense, reactive systems often represent the bottleneck. For these reasons, this work was focused on the integration of chemical (i.e., detailed kinetic mechanism) and physical (i.e., computational fluid dynamics) models. A theoretical-based kinetic mechanism mimicking the behaviour of oxygenated fuels and their intermediates under oxidative conditions in a wide range of temperature and pressure was developed. Its validity was tested against experimental data collected in this work by using the heat flux burner, as well as measurements retrieved from the current literature. Besides, estimations deriving from existing models considered as the benchmark in the combustion field were compared with the newly generated mechanism. The latter was found to be the most accurate for the investigated conditions and fuels. Most influential species and reactions on the combustion of butyl acetate were identified. The corresponding thermodynamic parameter and rate coefficients were quantified through ab initio calculations. A reduced detailed kinetic mechanism was produced and implemented in an open-source computational fluid dynamics model to characterize pool fires caused by the accidental release of aviation fuel and liquefied natural gas, at first. Eventually, partial oxidation processes involving light alkenes were optimized following the quick, fair, and smoot (QFS) paradigm. The proposed procedure represents a comprehensive and multidisciplinary approach for the construction and validation of accurate models, allowing for the characterization of developing industrial sectors and techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maleic anhydride (MA) is a very versatile molecule, indeed, with three functional groups (two carbonyl groups and one double bond C=C) it is an excellent joining and cross-linking material. It is obtained via selective oxidation of n-butane, using vanadyl pyrophosphate as a catalyst. The catalytic system has been largely studied over the years and it is normally used in the industrial production of MA, but the main open problem is to completely control its preparation. This thesis reports the effect of different preparation parameters employed during the calcination procedure for the transformation of precursor into the active catalyst. The thermal treatment is already known to be favoured in the presence of water, hence the first study was on the role of different amount of water co-fed with air, leading to obtain catalysts with an higher crystallinity. This is not the only parameter to control: the molar ratio of oxygen has also an important role, to obtain an active and selective catalyst. Some tests decreasing the “oxidizing power” of the mixture were carried out and it was observed a progressive development of VPP phase instead of oxidized V/P/O systems. Established the role of water and oxygen, the optimal conditions have been found when a mixture composed of air, water and nitrogen was used for the calcination, in the molar ratio of 30:10:60% respectively. Also at the lower temperature tested, i.e. 400°C, the catalyst presents the higher conversion of n-butane and MA yield compared to all other samples. The important conclusion we have reached is that not higher amount of water is necessary to obtain the most performing catalyst, thus leading to economic savings. Performing the same experiments on two different precursors, give catalysts with different activity but the mixture previously descripted is always the one that leads to the best performance.