2 resultados para TELLURITE GLASSES
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this work I reported recent results in the field of Statistical Mechanics of Equilibrium, and in particular in Spin Glass models and Monomer Dimer models . We start giving the mathematical background and the general formalism for Spin (Disordered) Models with some of their applications to physical and mathematical problems. Next we move on general aspects of the theory of spin glasses, in particular to the Sherrington-Kirkpatrick model which is of fundamental interest for the work. In Chapter 3, we introduce the Multi-species Sherrington-Kirkpatrick model (MSK), we prove the existence of the thermodynamical limit and the Guerra's Bound for the quenched pressure together with a detailed analysis of the annealed and the replica symmetric regime. The result is a multidimensional generalization of the Parisi's theory. Finally we brie y illustrate the strategy of the Panchenko's proof of the lower bound. In Chapter 4 we discuss the Aizenmann-Contucci and the Ghirlanda-Guerra identities for a wide class of Spin Glass models. As an example of application, we discuss the role of these identities in the proof of the lower bound. In Chapter 5 we introduce the basic mathematical formalism of Monomer Dimer models. We introduce a Gaussian representation of the partition function that will be fundamental in the rest of the work. In Chapter 6, we introduce an interacting Monomer-Dimer model. Its exact solution is derived and a detailed study of its analytical properties and related physical quantities is performed. In Chapter 7, we introduce a quenched randomness in the Monomer Dimer model and show that, under suitable conditions the pressure is a self averaging quantity. The main result is that, if we consider randomness only in the monomer activity, the model is exactly solvable.